36 research outputs found

    Parameters estimation in quantum optics

    Get PDF
    We address several estimation problems in quantum optics by means of the maximum-likelihood principle. We consider Gaussian state estimation and the determination of the coupling parameters of quadratic Hamiltonians. Moreover, we analyze different schemes of phase-shift estimation. Finally, the absolute estimation of the quantum efficiency of both linear and avalanche photodetectors is studied. In all the considered applications, the Gaussian bound on statistical errors is attained with a few thousand data.Comment: 11 pages. 6 figures. Accepted on Phys. Rev.

    Protocols for entanglement transformations of bipartite pure states

    Get PDF
    We present a general theoretical framework for both deterministic and probabilistic entanglement transformations of bipartite pure states achieved via local operations and classical communication. This framework unifies and greatly simplifies previous works. A necessary condition for ``pure contraction'' transformations is given. Finally, constructive protocols to achieve both probabilistic and deterministic entanglement transformations are presented.Comment: 7 pages, no figures. Version slightly modified on Physical Review A reques

    Local observables for entanglement witnesses

    Full text link
    We present an explicit construction of entanglement witnesses for depolarized states in arbitrary finite dimension. For infinite dimension we generalize the construction to twin-beams perturbed by Gaussian noises in the phase and in the amplitude of the field. We show that entanglement detection for all these families of states requires only three local measurements. The explicit form of the corresponding set of local observables (quorom) needed for entanglement witness is derived.Comment: minor corrections, title change

    Physical realizations of quantum operations

    Full text link
    Quantum operations (QO) describe any state change allowed in quantum mechanics, such as the evolution of an open system or the state change due to a measurement. We address the problem of which unitary transformations and which observables can be used to achieve a QO with generally different input and output Hilbert spaces. We classify all unitary extensions of a QO, and give explicit realizations in terms of free-evolution direct-sum dilations and interacting tensor-product dilations. In terms of Hilbert space dimensionality the free-evolution dilations minimize the physical resources needed to realize the QO, and for this case we provide bounds for the dimension of the ancilla space versus the rank of the QO. The interacting dilations, on the other hand, correspond to the customary ancilla-system interaction realization, and for these we derive a majorization relation which selects the allowed unitary interactions between system and ancilla.Comment: 8 pages, no figures. Accepted for publication on Phys. Rev.

    Universal homodyne tomography with a single local oscillator

    Full text link
    We propose a general method for measuring an arbitrary observable of a multimode electromagnetic field using homodyne detection with a single local oscillator. In this method the local oscillator scans over all possible linear combinations of the modes. The case of two modes is analyzed in detail and the feasibility of the measurement is studied on the basis of Monte-Carlo simulations. We also provide an application of this method in tomographic testing of the GHZ state.Comment: 12 pages, 5 figures (8 eps files

    Optimal cloning of unitary transformations

    Full text link
    After proving a general no-cloning theorem for black boxes, we derive the optimal universal cloning of unitary transformations, from one to two copies. The optimal cloner is realized by quantum channels with memory, and greately outperforms the optimal measure-and-reprepare cloning strategy. Applications are outlined, including two-way quantum cryptographic protocols.Comment: 4 pages, 1 figure, published versio

    Operational distance and fidelity for quantum channels

    Full text link
    We define and study a fidelity criterion for quantum channels, which we term the minimax fidelity, through a noncommutative generalization of maximal Hellinger distance between two positive kernels in classical probability theory. Like other known fidelities for quantum channels, the minimax fidelity is well-defined for channels between finite-dimensional algebras, but it also applies to a certain class of channels between infinite-dimensional algebras (explicitly, those channels that possess an operator-valued Radon--Nikodym density with respect to the trace in the sense of Belavkin--Staszewski) and induces a metric on the set of quantum channels which is topologically equivalent to the CB-norm distance between channels, precisely in the same way as the Bures metric on the density operators associated with statistical states of quantum-mechanical systems, derived from the well-known fidelity (`generalized transition probability') of Uhlmann, is topologically equivalent to the trace-norm distance.Comment: 26 pages, amsart.cls; improved intro, fixed typos, added a reference; accepted by J. Math. Phy

    Covariant quantum measurements which maximize the likelihood

    Full text link
    We derive the class of covariant measurements which are optimal according to the maximum likelihood criterion. The optimization problem is fully resolved in the case of pure input states, under the physically meaningful hypotheses of unimodularity of the covariance group and measurability of the stability subgroup. The general result is applied to the case of covariant state estimation for finite dimension, and to the Weyl-Heisenberg displacement estimation in infinite dimension. We also consider estimation with multiple copies, and compare collective measurements on identical copies with the scheme of independent measurements on each copy. A "continuous-variables" analogue of the measurement of direction of the angular momentum with two anti-parallel spins by Gisin and Popescu is given.Comment: 8 pages, RevTex style, submitted to Phys. Rev.

    Optimal quantum circuits for general phase estimation

    Get PDF
    We address the problem of estimating the phase phi given N copies of the phase rotation gate u(phi). We consider, for the first time, the optimization of the general case where the circuit consists of an arbitrary input state, followed by any arrangement of the N phase rotations interspersed with arbitrary quantum operations, and ending with a POVM. Using the polynomial method, we show that, in all cases where the measure of quality of the estimate phi' for phi depends only on the difference phi'-phi, the optimal scheme has a very simple fixed form. This implies that an optimal general phase estimation procedure can be found by just optimizing the amplitudes of the initial state.Comment: 4 pages, 3 figure

    Testing axioms for Quantum Mechanics on Probabilistic toy-theories

    Full text link
    In Ref. [1] one of the authors proposed postulates for axiomatizing Quantum Mechanics as a "fair operational framework", namely regarding the theory as a set of rules that allow the experimenter to predict future events on the basis of suitable tests, having local control and low experimental complexity. In addition to causality, the following postulates have been considered: PFAITH (existence of a pure preparationally faithful state), and FAITHE (existence of a faithful effect). These postulates have exhibited an unexpected theoretical power, excluding all known nonquantum probabilistic theories. Later in Ref. [2] in addition to causality and PFAITH, postulate LDISCR (local discriminability) and PURIFY (purifiability of all states) have been considered, narrowing the probabilistic theory to something very close to Quantum Mechanics. In the present paper we test the above postulates on some nonquantum probabilistic models. The first model, "the two-box world" is an extension of the Popescu-Rohrlich model, which achieves the greatest violation of the CHSH inequality compatible with the no-signaling principle. The second model "the two-clock world" is actually a full class of models, all having a disk as convex set of states for the local system. One of them corresponds to the "the two-rebit world", namely qubits with real Hilbert space. The third model--"the spin-factor"--is a sort of n-dimensional generalization of the clock. Finally the last model is "the classical probabilistic theory". We see how each model violates some of the proposed postulates, when and how teleportation can be achieved, and we analyze other interesting connections between these postulate violations, along with deep relations between the local and the non-local structures of the probabilistic theory.Comment: Submitted to QIP Special Issue on Foundations of Quantum Informatio
    corecore