78 research outputs found

    Liquid filled canyons on Titan

    Get PDF
    In May 2013 the Cassini RADAR altimeter observed channels in Vid Flumina, a drainage network connected to Titan’s second largest hydrocarbon sea, Ligeia Mare. Analysis of these altimeter echoes shows that the channels are located in deep (up to ~570 m), steep-sided, canyons and have strong specular surface reflections that indicate they are currently liquid filled. Elevations of the liquid in these channels are at the same level as Ligeia Mare to within a vertical precision of about 0.7 m, consistent with the interpretation of drowned river valleys. Specular reflections are also observed in lower order tributaries elevated above the level of Ligeia Mare, consistent with drainage feeding into the main channel system

    Microscopic theory for the incommensurate transition in TiOCl

    Full text link
    We propose a microscopic mechanism for the incommensurate phase in TiOX compounds. The model includes the antiferromagnetic chains of Ti ions immersed in the phonon bath of the bilayer structure. Making use of the Cross-Fisher theory, we show that the geometrically frustrated character of the lattice is responsible for the structural instability which leads the chains to an incommensurate phase without an applied magnetic field. In the case of TiOCl, we show that our model is consistent with the measured phonon frequencies at T=300KT=300K and the value of the incommensuration vector at the transition temperature. Moreover, we find that the dynamical structure factor shows a progressive softening of an incommensurate phonon near the zone boundary as the temperature decreases. This softening is accompanied by a broadening of the peak which gets asymmetrical as well when going towards the transition temperature. These features are in agreement with the experimental inelastic X-ray measurements.Comment: 6 pages, 5 figures. Published versio

    An Analysis of MARSIS Radar Flash Memory Data from Lunae Planum, Mars: Searching for Subsurface Structures

    Get PDF
    Lunae Planum is a Martian plain measuring approximately 1000 km in width and 2000 km in length, centered at coordinates 294°E-11°N. MOLA elevations range from +2500 m to +500 m in the south, gently sloping northward to -500 m. The plain is part of a belt of terrains located between the southern highlands and the northern lowlands, that are transitional in character (e.g., by elevation, age and morphology). These transitional terrains are poorly understood, in part because of their relative lack of major geomorphological features. They record however a very significant part of Mars's geologic history. The most evident features on Lunae Planum's Hesperian surface are regularly spaced, longitudinally striking, wrinkle ridges. These indicate the presence of blind thrust faults cutting through thick stacks of layers of volcanic or sedimentary rocks. The presence of fluidized ejecta craters scattered all over the region suggests also the presence of ice or volatiles in the subsurface. In a preliminary study of Lunae Planum's subsurface we used the Mars Express ground penetrating radar MARSIS dataset [1], in order to detect reflectors that could indicate the presence of fault planes or layering. Standard radargrams however, provided no evidence of changes in value of dielectric constant that could indicate possible geologic discontinuities or stratification of physically diverse materials. We thus started a new investigation based on processing of raw MARSIS data. Here we report on the preliminary results of this study. We searched the MARSIS archive for raw data stored in flash memory. When operating with flash storage, the radar collects 2 frequency bands along-track covering a distance = 100-250 km, depending on the orbiter altitude [2]. We found flash memory data from 24 orbits over the area. We processed the data focusing radar returns in off-nadir directions, to maximize the likelihood of detecting sloping subsurface structures, including those striking parallel to the Mars Express sub-polar orbits. We plan to follow this study by applying a new processor aimed at improving the resolution and signal to noise ratio of the data. [1] Caprarelli et al. (2017), LPSC 48, 1720. [2] Watters et al. (2017), LPSC 48, 1693

    Geologically recent areas as one key target for identifying active volcanism on Venus

    Get PDF
    The recently selected NASA VERITAS and DAVINCI missions, the ESA EnVision, the Roscosmos Venera-D will open a new era in the exploration of Venus. One of the key targets of the future orbiting and in situ investigations of Venus is the identification of volcanically active areas on the planet. The study of the areas characterized by recent or ongoing volcano-tectonic activity can inform us on how volcanism and tectonism are currently evolving on Venus. Following this key target, Brossier et al. (2022, https://doi.org/10.1029/2022GL099765) extend the successful approach and methodology used by previous works to Ganis Chasma in Atla Regio. Here we comment on the main results published in Brossier et al. (2022, https://doi.org/10.1029/2022GL099765) and discuss the important implications of their work for the future orbiting and in situ investigation of Venus. Their results add further lines of evidence indicating possibly recent volcanism on Venus

    Titan's cold case files - Outstanding questions after Cassini-Huygens

    Get PDF
    The entry of the Cassini-Huygens spacecraft into orbit around Saturn in July 2004 marked the start of a golden era in the exploration of Titan, Saturn's giant moon. During the Prime Mission (2004–2008), ground-breaking discoveries were made by the Cassini orbiter including the equatorial dune fields (flyby T3, 2005), northern lakes and seas (T16, 2006), and the large positive and negative ions (T16 & T18, 2006), to name a few. In 2005 the Huygens probe descended through Titan's atmosphere, taking the first close-up pictures of the surface, including large networks of dendritic channels leading to a dried-up seabed, and also obtaining detailed profiles of temperature and gas composition during the atmospheric descent. The discoveries continued through the Equinox Mission (2008–2010) and Solstice Mission (2010–2017) totaling 127 targeted flybys of Titan in all. Now at the end of the mission, we are able to look back on the high-level scientific questions from the start of the mission, and assess the progress that has been made towards answering these. At the same time, new scientific questions regarding Titan have emerged from the discoveries that have been made. In this paper we review a cross-section of important scientific questions that remain partially or completely unanswered, ranging from Titan's deep interior to the exosphere. Our intention is to help formulate the science goals for the next generation of planetary missions to Titan, and to stimulate new experimental, observational and theoretical investigations in the interim

    Possible explosion crater origin of small lake basins with raised rims on Titan

    Get PDF
    The Cassini mission discovered lakes and seas comprising mostly methane in the polar regions of Titan. Lakes of liquid nitrogen may have existed during the epochs of Titan’s past in which methane was photochemically depleted, leaving a nearly pure molecular nitrogen atmosphere and, thus, far colder temperatures. The modern-day small lake basins with sharp edges have been suggested to originate from dissolution processes, due to their morphological similarity to terrestrial karstic lakes. Here we analyse the morphology of the small lake basins that feature raised rims to elucidate their origin, using delay-Doppler processed altimetric and bathymetric data acquired during the last close flyby of Titan by the Cassini spacecraft. We find that the morphology of the raised-rim basins is analogous to that of explosion craters from magma–water interaction on Earth and therefore propose that these basins are from near-surface vapour explosions, rather than karstic. We calculate that the phase transition of liquid nitrogen in the near subsurface during a warming event can generate explosions sufficient to form the basins. Hence, we suggest that raised-rim basins are evidence for one or more warming events terminating a nitrogen-dominated cold episode on Titan

    Science goals and new mission concepts for future exploration of Titan's atmosphere geology and habitability: Titan POlar Scout/orbitEr and In situ lake lander and DrONe explorer (POSEIDON)

    Get PDF
    In response to ESA’s “Voyage 2050” announcement of opportunity, we propose an ambitious L-class mission to explore one of the most exciting bodies in the Solar System, Saturn’s largest moon Titan. Titan, a “world with two oceans”, is an organic-rich body with interior-surface-atmosphere interactions that are comparable in complexity to the Earth. Titan is also one of the few places in the Solar System with habitability potential. Titan’s remarkable nature was only partly revealed by the Cassini-Huygens mission and still holds mysteries requiring a complete exploration using a variety of vehicles and instruments. The proposed mission concept POSEIDON (Titan POlar Scout/orbitEr and In situ lake lander DrONe explorer) would perform joint orbital and in situ investigations of Titan. It is designed to build on and exceed the scope and scientific/technological accomplishments of Cassini-Huygens, exploring Titan in ways that were not previously possible, in particular through full close-up and in situ coverage over long periods of time. In the proposed mission architecture, POSEIDON consists of two major elements: a spacecraft with a large set of instruments that would orbit Titan, preferably in a low-eccentricity polar orbit, and a suite of in situ investigation components, i.e. a lake lander, a “heavy” drone (possibly amphibious) and/or a fleet of mini-drones, dedicated to the exploration of the polar regions. The ideal arrival time at Titan would be slightly before the next northern Spring equinox (2039), as equinoxes are the most active periods to monitor still largely unknown atmospheric and surface seasonal changes. The exploration of Titan’s northern latitudes with an orbiter and in situ element(s) would be highly complementary in terms of timing (with possible mission timing overlap), locations, and science goals with the upcoming NASA New Frontiers Dragonfly mission that will provide in situ exploration of Titan’s equatorial regions, in the mid-2030s

    Image resolution enhancing in the MARSIS experiment

    No full text
    MARSIS (Mars Advanced Radar for Subsurface and Ionosphere Sounding) is a low frequency, pulse-limited radar sounder and altimeter selected by ESA as a payload of the Mars Express mission. Synthetic aperture technique is required to reduce the wide ground footprint (due to the low operating frequency and the small allowable antenna dimensions) and, thus, the unwanted echo from other surface objects. MARSIS primary objective is to detect, map and characterize subsurface material discontinuities in the upper crust of Mars. These may include boundaries of liquid water-bearing zones, icy layers and geologic structures. Past studies have shown polar caps stratifications, in terms of depth structure and composition, ground ice abundance and seasonal variations (thickness of seasonal deposits, thermal effects). MARSIS is the first instrument able to detect what lies beneath the surface of Mars. MARSIS operates with a very high fractional bandwidth: 1MHz bandwidth allows a vertical resolution of 150 m in free space which corresponds to a lower resolution in the subsurface, depending on the electromagnetic wave propagation speed in the crust. The centre frequency of the pulses transmitted by MARSIS can be set to 1.8 MHz, 3MHz, 4 MHz and 5MHz. On day side operations, it operates only in 4MHz and 5MHz due to the ionosphere plasma frequencies of Mars that reflects all the frequencies lower than 4 MHz. All the four carrier frequencies are available for subsurface sounding on night side. This paper propose a modified version of the well known stepped frequency processing to improve the vertical resolution of MARSIS in order to allow the detection of thinner interfaces that could not be discriminated by the present processing because of its coarse vertical resolution. In fact, range resolution in SAR images is inversely proportional to the transmitted signal bandwidth. Since there is a limit in the transmitted bandwidth that can be supported by the radar hardware, there is a limit in range resolution that can be achieved by processing the SAR data in conventional way. However, if the frequency band of the received signal is widened with a group of sub-pulses, close in frequency (e.g. 3Mhz and 4 MHz), and properly combined, the composite signal increases the bandwidth and hence the improvement in range resolution can be achieved. The algorithm proposed modifies the standard stepped frequency processing introducing ionosphere effects compensation necessary for a correct data processing . Thanks to improved data set it will be possible to have either a deeper knowledge of the subsurface stratifications as well as additional information about the nature of the volume scattering useful in the data inversion process (estimation of the materials composing the surface and the subsurface by the estimation of the dielectric constants)
    • 

    corecore