13,814 research outputs found
Constraining and Dark Energy with Gamma-Ray Bursts
An relationship with a small
scatter for current -ray burst (GRB) data was recently reported, where
is the beaming-corrected -ray energy and
is the peak energy in the local observer frame. By considering this
relationship for a sample of 12 GRBs with known redshift, peak energy, and
break time of afterglow light curves, we constrain the mass density of the
universe and the nature of dark energy. We find that the mass density
(at the confident level) for a flat
universe with a cosmological constant, and the parameter of an assumed
static dark-energy equation of state ().
Our results are consistent with those from type Ia supernovae. A larger sample
established by the upcoming {\em Swift} satellite is expected to provide
further constraints.Comment: 8 pages including 4 figures, to appear in ApJ Letters, typos
correcte
CXOU J005047.9-731817: a 292-s X-ray binary pulsar in the Small Magellanic Cloud
We report on the discovery of a transient X-ray pulsars, located in the Small
Magellanic Cloud, with a pulse period of 292 s. A series of Chandra pointings
fortuitously recorded in 2010 April-May the occurrence of a two-weeks-long
outburst, during which the source luminosity increased by a factor of about
100, reaching a peak of ~1E36 erg/s (for a distance of 61 kpc). Complex-shape
and energy-dependent pulsations were detected close to the outburst peak and
during the very first part of its decay phase. During the outburst, the
phase-averaged spectrum of the pulsar was well described by an absorbed power
law with photon index ~0.6, but large variations as a function of phase were
present. The source was also detected by Chandra several times (during 2002,
2003, 2006, and 2010) at a quiescent level of ~1E34 erg/s. In 2012 we performed
an infrared photometric follow-up of the R ~ 15 mag optical counterpart with
the ESO/VLT and a spectroscopic observation by means of the CTIO telescope. The
optical spectra suggest a late-Oe or early-Be V-III luminosity-class star,
though a more evolved companion cannot be ruled out by our data (we can exclude
a luminosity class I and a spectral type later than B2). Finally, we show that
the outburst main parameters (duration and peak luminosity) can be accounted
for by interpreting the source transient activity as a type I outburst in a Be
X-ray binary.Comment: MNRAS, in press; 8 pages, 7 figures, 4 tables; Figure 1 in reduced
qualit
Commissioning of the CMS DT electronics under magnetic field
After several months of installation and commissioning of the CMS (Compact Muon Solenoid) DT (Drift Tube) electronics, the system has finally been operated under magnetic field during the so-called CRAFT (Cosmic Run at Four Tesla) exercise. Over 4 weeks, the full detector has been running continuously under magnetic field and managed to acquire more than 300 million cosmic muons. The performance of the trigger and data acquisition systems during this period has been very satisfactory. The main results concerning stability and reliability of the detector are presented and discussed
GRB Afterglows from Anisotropic Jets
Some progenitor models of gamma-ray bursts (GRBs) (e.g., collapsars) may
produce anisotropic jets in which the energy per unit solid angle is a
power-law function of the angle (). We calculate light
curves and spectra for GRB afterglows when such jets expand either in the
interstellar medium or in the wind medium. In particular, we take into account
two kinds of wind: one () possibly from a typical red
supergiant star and another () possibly from a Wolf-Rayet
star. We find that in each type of medium, one break appears in the late-time
afterglow light curve for small but becomes weaker and smoother as
increases. When , the break seems to disappear but the afterglow decays
rapidly. Thus, one expects that the emission from expanding, highly anisotropic
jets provides a plausible explanation for some rapidly fading afteglows whose
light curves have no break. We also present good fits to the optical afterglow
light curve of GRB 991208. Finally, we argue that this burst might arise from a
highly anisotropic jet expanding in the wind () from a red
supergiant to interpret the observed radio-to-optical-band afterglow data
(spectrum and light curve).Comment: 12 pages + 10 figures, accepted by Ap
Unveiling the nature of the unidentified gamma-ray sources III: gamma-ray blazar-like counterparts at low radio frequencies
About one third of the gamma-ray sources listed in the second Fermi LAT
catalog (2FGL) have no firmly established counterpart at lower energies so
being classified as unidentified gamma-ray sources (UGSs). Here we propose a
new approach to find candidate counterparts for the UGSs based on the 325 MHz
radio survey performed with Westerbork Synthesis Radio Telescope (WSRT) in the
northern hemisphere. First we investigate the low-frequency radio properties of
blazars, the largest known population of gamma-ray sources; then we search for
sources with similar radio properties combining the information derived from
the Westerbork Northern Sky Survey (WENSS) with those of the NRAO VLA Sky
survey (NVSS). We present a list of candidate counterparts for 32 UGSs with at
least one counterpart in the WENSS. We also performed an extensive research in
literature to look for infrared and optical counterparts of the gamma-ray
blazar candidates selected with the low-frequency radio observations to confirm
their nature. On the basis of our multifrequency research we identify 23 new
gamma-ray blazar candidates out of 32 UGSs investigated. Comparison with
previous results on the UGSs are also presented. Finally, we speculate on the
advantages on the use of the low-frequency radio observations to associate UGSs
and to search for gamma-ray pulsar candidates.Comment: 15 pages, 13 figures, 3 tables, ApJS accepted for publication
(version pre-proof corrections
Gamma-Ray Burst Afterglows with Energy Injection: Homogeneous Versus Wind External Media
Assuming an adiabatic evolution of a gamma-ray burst (GRB) fireball
interacting with an external medium, we calculate the hydrodynamics of the
fireball with energy injection from a strongly magnetic millisecond pulsar
through magnetic dipole radiation, and obtain the light curve of the optical
afterglow from the fireball by synchrotron radiation. Results are given both
for a homogeneous external medium and for a wind ejected by GRB progenitor. Our
calculations are also available in both ultra-relativistic and non-relativistic
phases. Furthermore, the observed R-band light curve of GRB{000301C} can be
well fitted in our model, which might provide a probe of the properties of GRB
progenitors.Comment: revised version for publication in Chin. Phys. Let
- …
