1,632 research outputs found

    Sesgo tafonómico en los datos de distribución de Cloudina en Siberia

    Get PDF
    Cloudina-morph fossils in Siberia have been traditionally regarded as a taphonomic mode of Anabarites tests inserted one into another under specific hydrodynamic conditions. Clusters of telescoped conical tests are ubiquitous in the Kessyusa Group and coeval strata across Siberia and not all of them can be easily interpreted as a result of simple mechanical stacking. It remains to be confirmed whether any of these clusters actually represents a life association of a Cloudina-morph structure.En Siberia los morfotipos de Cloudina han sido tradicionalmente considerados como una variedad tafonómica de conchas de Anabarites, insertadas una dentro de otra, bajo condiciones hidrodinámicas específicas. Las asociaciones de conchas cónicas telescópicas son omnipresentes en el Grupode Kessyusa y en estratos contemporáneos a lo largo de Siberia, y no todos ellos pueden ser fácilmente interpretados como resultado de un simple apilamiento mecánico. Queda por ver si alguna de estas bioacumulaciones representa una asociación de vida de una estructura morfotípica de tipo Cloudina

    Bunch-excited wakefield in dielectric waveguide with hollow plasma channel

    Full text link
    Wakefield excitation by a single relativistic electron bunch in a plasma-dielectric accelerating structure has been studied both analytically and numerically. The structure represents a dielectric-loaded cylindrical metal waveguide, which has partially plasma-filled channel (the hollow plasma channel) to transport charged particles. Assuming the linear regime of excitation, analytical expressions have been derived for the longitudinal and radial wakefields generated by a finite-size electron bunch. Axial profiles of wakefield component amplitudes have been studied, and their mode and spectrum analyses have been performed. Furthermore, the electron bunch-driven wakefield excitation has been PIC-simulated numerically for the quasi-linear regime. The comparative analysis of the data resulting from analytical studies and the ones obtained by numerical simulation has demonstrated qualitative agreement between the results

    Imaging the charge transport in arrays of CdSe nanocrystals

    Full text link
    A novel method to image charge is used to measure the diffusion coefficient of electrons in films of CdSe nanocrystals at room temperature. This method makes possible the study of charge transport in films exhibiting high resistances or very small diffusion coefficients.Comment: 4 pages, 4 jpg figure

    Dynamical differential equations compatible with rational qKZ equations

    Full text link
    For the Lie algebra glNgl_N we introduce a system of differential operators called the dynamical operators. We prove that the dynamical differential operators commute with the glNgl_N rational quantized Knizhnik-Zamolodchikov difference operators. We describe the transformations of the dynamical operators under the natural action of the glNgl_N Weyl group.Comment: 7 pages, AmsLaTe

    Nonlinear dynamics of soft fermion excitations in hot QCD plasma III: Soft-quark bremsstrahlung and energy losses

    Full text link
    In general line with our early works [Yu.A. Markov, M.A. Markova, Nucl. Phys. A770 (2006) 162; 784 (2007) 443] within the framework of a semiclassical approximation the general theory of calculation of effective currents and sources generating bremsstrahlung of an arbitrary number of soft quarks and soft gluons at collision of a high-energy color-charged particle with thermal partons in a hot quark-gluon plasma, is developed. For the case of one- and two-scattering thermal partons with radiation of one or two soft excitations, the effective currents and sources are calculated in an explicit form. In the model case of `frozen' medium, approximate expressions for energy losses induced by the most simple processes of bremsstrahlung of soft quark and soft gluon, are derived. On the basis of a conception of the mutual cancellation of singularities in the sum of so-called `diagonal' and `off-diagonal' contributions to the energy losses, an effective method of determining color factors in scattering probabilities, containing the initial values of Grassmann color charges, is suggested. The dynamical equations for Grassmann color charges of hard particle used by us early are proved to be insufficient for investigation of the higher radiative processes. It is shown that for correct description of these processes the given equations should be supplemented successively with the higher-order terms in powers of the soft fermionic field.Comment: 93 pages, 20 figure

    Field of homogeneous Plane in Quantum Electrodynamics

    Full text link
    We study quantum electrodynamics coupled to the matter field on singular background, which we call defect. For defect on the infinite plane we calculated the fermion propagator and mean electromagnetic field. We show that at large distances from the defect plane, the electromagnetic field is constant what is in agreement with the classical results. The quantum corrections determining the field near the plane are calculated in the leading order of perturbation theory.Comment: 16 page

    Casimir type effects for scalar fields interacting with material slabs

    Full text link
    We study the field theoretical model of a scalar field in presence of spacial inhomogeneities in form of one and two finite width mirrors (material slabs). The interaction of the scalar field with the defect is described with position-dependent mass term. For the single layer system we develop a rigorous calculation method and derive explicitly the propagator of the theory, S-matrix elements and the Casimir self-energy of the slab. Detailed investigation of particular limits of self-energy is presented, and connection to know cases is discussed. The calculation method is found applicable to the two mirrors case as well. By means of it we derive the corresponding Casimir energy and analyze it. For particular values of the parameters of the model the obtained results recover the Lifshitz formula. We also propose a procedure to obtain unambiguously the finite Casimir \textit{self}-energy of a single slab without reference to any renormalizations. We hope that our approach can be applied to calculation of Casimir self-energies in other demanded cases (such as dielectric ball, etc.)Comment: 22 pages, 3 figures, published version, significant changes in Section 4.

    Parity violating cylindrical shell in the framework of QED

    Full text link
    We present calculations of Casimir energy (CE) in a system of quantized electromagnetic (EM) field interacting with an infinite circular cylindrical shell (which we call `the defect'). Interaction is described in the only QFT-consistent way by Chern-Simon action concentrated on the defect, with a single coupling constant aa. For regularization of UV divergencies of the theory we use % physically motivated Pauli-Villars regularization of the free EM action. The divergencies are extracted as a polynomial in regularization mass MM, and they renormalize classical part of the surface action. We reveal the dependence of CE on the coupling constant aa. Corresponding Casimir force is attractive for all values of aa. For aa\to\infty we reproduce the known results for CE for perfectly conducting cylindrical shell first obtained by DeRaad and Milton.Comment: Typos corrected. Some references adde
    corecore