3,960 research outputs found

    Persistence in q-state Potts model: A Mean-Field approach

    Full text link
    We study the Persistence properties of the T=0 coarsening dynamics of one dimensional qq-state Potts model using a modified mean-field approximation (MMFA). In this approximation, the spatial correlations between the interfaces separating spins with different Potts states is ignored, but the correct time dependence of the mean density P(t)P(t) of persistent spins is imposed. For this model, it is known that P(t)P(t) follows a power-law decay with time, P(t)∼t−θ(q)P(t)\sim t^{-\theta(q)} where θ(q)\theta(q) is the qq-dependent persistence exponent. We study the spatial structure of the persistent region within the MMFA. We show that the persistent site pair correlation function P2(r,t)P_{2}(r,t) has the scaling form P2(r,t)=P(t)2f(r/t1/2)P_{2}(r,t)=P(t)^{2}f(r/t^{{1/2}}) for all values of the persistence exponent θ(q)\theta(q). The scaling function has the limiting behaviour f(x)∼x−2θf(x)\sim x^{-2\theta} (x≪1x\ll 1) and f(x)→1f(x)\to 1 (x≫1x\gg 1). We then show within the Independent Interval Approximation (IIA) that the distribution n(k,t)n(k,t) of separation kk between two consecutive persistent spins at time tt has the asymptotic scaling form n(k,t)=t−2ϕg(t,ktϕ)n(k,t)=t^{-2\phi}g(t,\frac{k}{t^{\phi}}) where the dynamical exponent has the form ϕ\phi=max(1/2,θ{1/2},\theta). The behaviour of the scaling function for large and small values of the arguments is found analytically. We find that for small separations k≪tϕ,n(k,t)∼P(t)k−τk\ll t^{\phi}, n(k,t)\sim P(t)k^{-\tau} where τ\tau=max(2(1−θ),2θ2(1-\theta),2\theta), while for large separations k≫tϕk\gg t^{\phi}, g(t,x)g(t,x) decays exponentially with xx. The unusual dynamical scaling form and the behaviour of the scaling function is supported by numerical simulations.Comment: 11 pages in RevTeX, 10 figures, submitted to Phys. Rev.

    Persistence in One-dimensional Ising Models with Parallel Dynamics

    Full text link
    We study persistence in one-dimensional ferromagnetic and anti-ferromagnetic nearest-neighbor Ising models with parallel dynamics. The probability P(t) that a given spin has not flipped up to time t, when the system evolves from an initial random configuration, decays as P(t) \sim 1/t^theta_p with theta_p \simeq 0.75 numerically. A mapping to the dynamics of two decoupled A+A \to 0 models yields theta_p = 3/4 exactly. A finite size scaling analysis clarifies the nature of dynamical scaling in the distribution of persistent sites obtained under this dynamics.Comment: 5 pages Latex file, 3 postscript figures, to appear in Phys Rev.
    • …
    corecore