10 research outputs found

    Accuracy of a novel trace-registration method for dynamic navigation surgery.

    No full text
    A technology called Trace Registration (TR) has been introduced to allow dynamic navigation of implant placement without the need for a thermoplastic stent. This study was undertaken in order to validate the accuracy of the TR protocol for dynamically guided implant surgery. A retrospective, observational, in vivo study was performed using dynamic navigation via the TR protocol. The preoperative cone beam computed tomography (CBCT) plan was superimposed and registered (aligned) with the postoperative CBCT scan to assess accuracy parameters. A total of 136 implants were placed in 59 partially edentulous arches. Mean deviation between the planned and actual position for all implants was 0.67 mm at the coronal level (entry point), 0.9 mm at the apical level, and 0.55 mm in depth, with an angle discrepancy of 2.50 degrees. Tracing 5 to 6 teeth tended to improve accuracy results compared to tracing 3 to 4 teeth. TR is as accurate as traditional registration and statically guided methods for implant surgery

    Accuratezza e precisione di un nuovo sistema di chirurgia guidata: studio clinico multicentrico [Multicenter clinical study on accuracy and precision of a new guided surgery system]

    No full text
    Objectives The aim of this study is to evaluate the accuracy of a new guided surgery system. Materials and methods Twenty-six patients were treated in 8 centers with a total 116 implants placed. The surgical guides were bone supported, mucosal or teeth supported. At the end of the surgical phase, a post-op CT scan was taken to evaluate the discrepancies between the virtual and the clinical implant position. Results The mean values regarding the 3D implant position are in line with the mean values reported in the literature. Bone supported and mucosal supported guides are more precise than dental or dental-mucosal supported guides, however, the differences are not statistically significant. Discrepancies at the implant apex, at platform level and at the angle between virtual and clinical position were evaluated by superimposing a pre-op CT scan to a post-op CT scan. Conclusions The accuracy of the guided surgery system used is in line with the data of the literature. A good diagnostic phase is recommended and it is very important to plan the implant position with a safety distance from the anatomical structures of at least 2 mm. In clinical cases of immediate loading it is recommended to reline a provisional prosthesis to compensate the discrepancies between the virtual and the clinical implant position

    Accuracy evaluation of 14 maxillary full arch implant treatments performed with Da Vinci bridge: a case series

    No full text
    The use of pterygoid implants can be an attractive alternative to sinus bone grafting in the treatment of posterior atrophic maxilla. This technique has not been widely used because of the difficulty of the surgical access, the presence of vital structures, and the prosthetic challenges. The use of dynamic computer aided implantology (DCAI) allows the clinician to utilize navigation dental implant surgery, which allows the surgeon to follow the osteotomy site and implant positioning in real time. A total of 14 patients (28 pterygoid implants and 56 intersinusal implants) were enrolled in the study for a full arch implant prosthetic rehabilitation (4 frontal implants and 2 pterygoids implants), using a dynamic navigation system. The reported accuracy of pterygoid implants inserted using DCAI was 0.72 mm at coronal point, 1.25 mm at apical 3D, 0.66 mm at apical depth, and 2.86ffi as angular deviation. The use of pterygoid implants in lieu of bone grafting represents a valid treatment opportunity to carry out a safe, accurate, and minimally invasive surgery, while reducing treatment time and avoiding cantilevers for a full implant prosthetic rehabilitation of the upper arch

    Accuracy of dynamic navigation system workflow for implant supported full arch prosthesis: a case series

    No full text
    A minimally invasive implant treatment approach for future full arch implant prosthetic rehabilitations of trophic jaws represents a challenge. An optimal implant planning is strongly related with an accurate merge of the prosthetic information and the radiographic data. To comply with that, most computer aided implantology (CAI) systems require additional steps, as radiographic stents or fiducial markers to overlap digital jaw scans to cone beam computed tomography (CBCT) data. Using dynamic CAI, residual teeth (up to three) make it possible for the merge to avoid new radiographic scans. An additional challenge is the treatment involving immediate implants compared with delayed implants placed into healed bone. As for other static CAI systems, the operator’s experience and the quality of the CBCT data make the planning affordable and secure the entire implants placement procedure. The literature reports accuracies in terms of comparison between placed implants and planned implants, following a double CBCT approach, based on radiographic volume overlapping. Thirteen consecutive future totally edentulous patients (77 implants), divided into two groups (group A: 3–4 teeth traced; group B: 5– 6 teeth traced) requiring a full arch implant prosthetic rehabilitation were included in the reported case series. A dynamic CAI was used to plan and to place all implants following all the recommended digital steps. The software used provided a tool (Trace and Place) that made the merge between X-ray views of the residual teeth and their own positions possible. This method definitely registered that teeth positions comply with the required accuracy live check. After implants placement, a post-operative CBCT was taken in order to evaluate the deviations of the achieved implants at coronal, apical, and depth level as well as angular deviations. Statistically significant radiological mean difference between the two groups was found in the coronal position of implants (0.26 mm, p < 0.001), in the apical position of implants (0.29 mm, p < 0.001), in the depth of implants (0.16 mm, p = 0.022), and in the angular deviation (0.7, p = 0.004). The use of the TaP technology for the treatment of the patients with at least three stable teeth that need to be removed for a totally implant prosthetic treatment is a promising technique. The performed accuracy analysis demonstrated that this digital protocol can be used without a loss of accuracy of the achieved implants compared to planned ones

    Surgical Engineering in Cranio-Maxillofacial Surgery: A Literature Review

    No full text
    corecore