9 research outputs found

    A preliminary model of end user sophistication for insider threat prediction in IT systems

    Get PDF
    Abstract The dangers that originate from acts of IT system misuse by legitimate users constitute a separate category of threats with well documented consequences for the integrity, privacy and availability of computer systems and networks. Amongst the various properties of malicious legitimate users one of the most notable ones is the level of his/her sophistication. Various studies indicate that user sophistication and the potential to misuse IT systems are properties that are strongly related. This paper presents a methodology that automates the process of gauging end user sophistication. The establishment of suitable metrics to characterize end user sophistication is discussed followed by an experimental verification of the metrics on a sample of 60 legitimate users, using the UNIX Operating System. The results indicate that a combination of application execution audits and computational resource utilization metrics could be used to characterize the level of IT sophistication of an end user. Although additional testing in a greater variety of computational environments is required in order to validate the derived preliminary scheme, it is considered that the derived methodology could serve as a component of experimental insider threat prediction processes, or any other model that requires a procedure to measure the level of IT knowledge of a legitimate user base.

    Improving the Information Security Model by using TFI

    Get PDF
    In the context of information systems and information technology, information security is a concept that is becoming widely used. The European Network of Excellence INTEROP classifies information security as a nonfunctional aspect of interoperability and as such it is an integral part of the design process for interoperable systems. In the last decade, academics and practitioners have shown their interest in information security, for example by developing security models for evaluating products and setting up security specifications in order to safeguard the confidentiality, integrity, availability and accountability of data. Earlier research has shown that measures to achieve information security in the administrative or organisational level are missing or inadequate. Therefore, there is a need to improve information security models by including vital elements of information security. In this paper, we introduce a holistic view of information security based on a Swedish model combined with a literature survey. Furthermore we suggest extending this model using concepts based on semiotic theory and adopting the view of an information system as constituted of the technical, formal and informal (TFI) parts. The aim is to increase the understanding of the information security domain in order to develop a well-founded theoretical framework, which can be used both in the analysis and the design phase of interoperable systems. Finally, we describe and apply the Information Security (InfoSec) model to the results of three different case studies in the healthcare domain. Limits of the model will be highlighted and an extension will be proposed.In the context of information systems and information technology, information security is a concept that is becoming widely used. The European Network of Excellence INTEROP classifies information security as a nonfunctional aspect of interoperability and as such it is an integral part of the design process for interoperable systems. In the last decade, academics and practitioners have shown their interest in information security, for example by developing security models for evaluating products and setting up security specifications in order to safeguard the confidentiality, integrity, availability and accountability of data. Earlier research has shown that measures to achieve information security in the administrative or organisational level are missing or inadequate. Therefore, there is a need to improve information security models by including vital elements of information security. In this paper, we introduce a holistic view of information security based on a Swedish model combined with a literature survey. Furthermore we suggest extending this model using concepts based on semiotic theory and adopting the view of an information system as constituted of the technical, formal and informal (TFI) parts. The aim is to increase the understanding of the information security domain in order to develop a well-founded theoretical framework, which can be used both in the analysis and the design phase of interoperable systems. Finally, we describe and apply the Information Security (InfoSec) model to the results of three different case studies in the healthcare domain. Limits of the model will be highlighted and an extension will be proposed.Monograph's chapter

    Biometrically linking document leakage to the individuals responsible

    Get PDF
    Insider threats are a significant security issue. The last decade has witnessed countless instances of data loss and exposure in which data has become publicly available and easily accessible. Losing or disclosing sensitive data or confidential information may cause substantial financial and reputational damage to a company. Whilst more recent research has specifically focused on the insider misuse problem, it has tended to focus on the information itself – either through its protection or approaches to detect leakage. In contrast, this paper presents a proactive approach to the attribution of misuse via information leakage using biometrics and a locality-sensitive hashing scheme. The hash digest of the object (e.g. a document) is mapped with the given biometric information of the person who interacted with it and generates a digital imprint file that represents the correlation between the two parties. The proposed approach does not directly store or preserve any explicit biometric information nor document copy in a repository. It is only the established correlation (imprint) is kept for the purpose of reconstructing the mapped information once an incident occurred. Comprehensive experiments for the proposed approach have shown that it is highly possible to establish this correlation even when the original version has undergone significant file modification. In many scenarios, such as changing the file format r removing parts of the document, including words and sentences, it was possible to extract and reconstruct the correlated biometric information out of a modified document (e.g. 100 words were deleted) with an average success rate of 89.31%

    An Intent-Driven Masquerader Detection Framework Based on Data Fusion

    No full text

    A state machine system for insider threat detection

    No full text
    The risk from insider threats is rising significantly, yet the majority of organizations are ill-prepared to detect and mitigate them. Research has focused on providing rule-based detection systems or anomaly detection tools which use features indicative of malicious insider activity. In this paper we propose a system complimentary to the aforementioned approaches. Based on theoretical advances in describing attack patterns for insider activity, we design and validate a state-machine system that can effectively combine policies from rule-based systems and alerts from anomaly detection systems to create attack patterns that insiders follow to execute an attack. We validate the system in terms of effectiveness and scalability by applying it on ten synthetic scenarios. Our results show that the proposed system allows analysts to craft novel attack patterns and detect insider activity while requiring minimum computational time and memory
    corecore