15,320 research outputs found

    Mantle geoneutrinos in KamLAND and Borexino

    Full text link
    The KamLAND and Borexino experiments have observed, each at ~4 sigma level, signals of electron antineutrinos produced in the decay chains of thorium and uranium in the Earth's crust and mantle (Th and U geoneutrinos). Various pieces of geochemical and geophysical information allow an estimation of the crustal geoneutrino flux components with relatively small uncertainties. The mantle component may then be inferred by subtracting the estimated crustal flux from the measured total flux. To this purpose, we analyze in detail the experimental Th and U geoneutrino event rates in KamLAND and Borexino, including neutrino oscillation effects. We estimate the crustal flux at the two detector sites, using state-of-the-art information about the Th and U distribution on global and local scales. We find that crust-subtracted signals show hints of a residual mantle component, emerging at ~2.4 sigma level by combining the KamLAND and Borexino data. The inferred mantle flux slightly favors scenarios with relatively high Th and U abundances, within +-1 sigma uncertainties comparable to the spread of predictions from recent mantle models.Comment: Slight changes and improvements in the text & figures. Results unchanged. To appear in Phys. Rev.

    Geo-neutrinos

    Full text link
    We review a new interdisciplinary field between Geology and Physics: the study of the Earth's geo-neutrino flux. We describe competing models for the composition of the Earth, present geological insights into the make up of the continental and oceanic crust, those parts of the Earth that concentrate Th and U, the heat producing elements, and provide details of the regional settings in the continents and oceans where operating and planned detectors are sited. Details are presented for the only two operating detectors that are capable of measuring the Earth's geo-neutrinos flux: Borexino and KamLAND; results achieved to date are presented, along with their impacts on geophysical and geochemical models of the Earth. Finally, future planned experiments are highlighted

    Two-sided radio emission in ON231 (W Comae)

    Full text link
    Recent radio images of the BL Lac object ON231 (W Com, 1219+285) show remarkable new features in the source structure compared to those previously published. The images were obtained from observations made with the European VLBI Network plus MERLIN at 1.6 GHz and 5 GHz after the exceptional optical outburst occurred in Spring 1998. The up-to-date B band historic light curve of ON231 is also presented together with the R band luminosity evolution in the period 1994--1999. We identify the source core in the radio images with the brightest component having the flattest spectrum. A consequence of this assumption is the existence of a two--sided emission in ON231 not detected in previous VLBI images. A further new feature is a large bend in the jet at about 10 mas from the core. The emission extends for about 20 mas after the bend, which might be due to strong interaction with the environment surrounding the nucleus. We suggest some possible interpretations to relate the changes in the source structure with the optical and radio flux density variation in the frame of the unification model.Comment: 8 pages, 8 figure
    • ā€¦
    corecore