31 research outputs found

    Early Lung Function Abnormalities in Acromegaly.

    Get PDF
    BACKGROUND: Acromegaly is an insidious disorder caused by a pituitary growth hormone (GH)-secreting adenoma resulting in high circulating levels of GH and insulin-like growth factor I (IGF-I). Respiratory disorders are common complications in acromegaly, and can severely impact on quality of life, eventually affecting mortality. OBJECTIVES: The present study aimed to explore structural and functional lung alterations of acromegalic subjects. METHODS: We enrolled 10 consecutive patients (M/F: 5/5) affected by acromegaly. In all patients, magnetic resonance imaging (MRI) revealed the presence of pituitary tumor. All patients underwent clinical, lung functional, biological, and radiological assessments. Ten healthy age-matched subjects also served as controls. RESULTS: No statistically significant differences in lung function were detected between acromegalic and healthy subjects (p ≥ 0.05 for all analyses). However, the diffusing capacity for CO (TLCO) was significantly lower in the acromegalic group than in healthy subjects (TLCO% predicted: 78.1 ± 16 vs. 90 ± 6 %, respectively, p = 0.04; KCO% predicted: 77 ± 16 vs. 93 ± 5 %, p = 0.02, respectively). None of the lung function parameters correlated with duration of the disease, or with inflammatory marker of the airways. In acromegalics, biological (exhaled NO concentrations) and imaging (total lung volume, TLV, and mean lung density, MLD) evaluations were within normal values. The TLV measured by HRCT was 3540 ± 1555 ml in acromegalics, and the MLD was -711 ± 73 HU. None of the lung functional, radiological, and biological findings correlated with GH or IGF-I levels, and no correlation was found with duration of disease. CONCLUSIONS: In the current study, lung function evaluation allowed to detect early involvement of lung parenchyma, as assessed by TLCO and KCO, even in the absence of parenchymal density alterations of the lung by HRCT. These findings suggest to routinely include the carbon monoxide diffusing capacity in the lung function assessment for an early intervention in acromegaly

    Microvascular Endothelial Cells Exhibit Optimal Aspect Ratio for Minimizing Flow Resistance

    Get PDF
    A recent analytical solution of the three-dimensional Stokes flow through a bumpy tube predicts that for a given bump area, there exists an optimal circumferential wavenumber which minimizes flow resistance. This study uses measurements of microvessel endothelial cell morphology to test whether this prediction holds in the microvasculature. Endothelial cell (EC) morphology was measured in blood perfused in situ microvessels in anesthetized mice using confocal intravital microscopy. EC borders were identified by immunofluorescently labeling the EC surface molecule ICAM-1 which is expressed on the surface but not in the EC border regions. Comparison of this theory with extensive in situ measurements of microvascular EC geometry in mouse cremaster muscle using intravital microscopy reveals that the spacing of EC nuclei in venules ranging from 27 to 106 μm in diameter indeed lies quite close to this predicted optimal configuration. Interestingly, arteriolar ECs are configured to minimize flow resistance not in the resting state, but at the dilated vessel diameter. These results raise the question of whether less organized circulatory systems, such as that found in newly formed solid tumors or in the developing embryo, may deviate from the optimal bump spacing predicted to minimize flow resistance
    corecore