27,660 research outputs found

    Spontaneous spatial fractal pattern formation in absorptive systems

    Get PDF
    We predict, for the first time to our knowledge, that purely-absorptive nonlinearity can support spontaneous spatial fractal pattern formation. A passive optical ring cavity with a thin slice of saturable absorber is analyzed. Linear stability analysis yields threshold curves for Turing (static) instabilities with features proposed as characteristics of potential fractal pattern formation. Numerical simulations of the fully-nonlinear dynamics, with both one and two transverse dimensions, confirm theoretical predictions

    Revisiting the Cooling Flow Problem in Galaxies, Groups, and Clusters of Galaxies

    Get PDF
    We present a study of 107 galaxies, groups, and clusters spanning ~3 orders of magnitude in mass, ~5 orders of magnitude in central galaxy star formation rate (SFR), ~4 orders of magnitude in the classical cooling rate (dM/dt) of the intracluster medium (ICM), and ~5 orders of magnitude in the central black hole accretion rate. For each system in this sample, we measure dM/dt using archival Chandra X-ray data and acquire the SFR and systematic uncertainty in the SFR by combining over 330 estimates from dozens of literature sources. With these data, we estimate the efficiency with which the ICM cools and forms stars, finding e_cool = SFR/(dM/dt) = 1.4 +/- 0.4% for systems with dM/dt > 30 Msun/yr. For these systems, we measure a slope in the SFR-dM/dt relation greater than unity, suggesting that the systems with the strongest cool cores are also cooling more efficiently. We propose that this may be related to, on average, higher black hole accretion rates in the strongest cool cores, which could influence the total amount (saturating near the Eddington rate) and dominant mode (mechanical vs radiative) of feedback. For systems with dM/dt < 30 Msun/yr, we find that the SFR and dM/dt are uncorrelated, and show that this is consistent with star formation being fueled at a low (but dominant) level by recycled ISM gas in these systems. We find an intrinsic log-normal scatter in SFR at fixed dM/dt of 0.52 +/- 0.06 dex, suggesting that cooling is tightly self-regulated over very long timescales, but can vary dramatically on short timescales. There is weak evidence that this scatter may be related to the feedback mechanism, with the scatter being minimized (~0.4 dex) in systems for which the mechanical feedback power is within a factor of two of the cooling luminosity.Comment: 16 pages, 10 figures, 6 tables. Submitted to ApJ. Comments welcome

    Precise study of asymptotic physics with subradiant ultracold molecules

    Get PDF
    Weakly bound molecules have physical properties without atomic analogues, even as the bond length approaches dissociation. In particular, the internal symmetries of homonuclear diatomic molecules result in formation of two-body superradiant and subradiant excited states. While superradiance has been demonstrated in a variety of systems, subradiance is more elusive due to the inherently weak interaction with the environment. Here we characterize the properties of deeply subradiant molecular states with intrinsic quality factors exceeding 101310^{13} via precise optical spectroscopy with the longest molecule-light coherent interaction times to date. We find that two competing effects limit the lifetimes of the subradiant molecules, with different asymptotic behaviors. The first is radiative decay via weak magnetic-dipole and electric-quadrupole interactions. We prove that its rate increases quadratically with the bond length, confirming quantum mechanical predictions. The second is nonradiative decay through weak gyroscopic predissociation, with a rate proportional to the vibrational mode spacing and sensitive to short-range physics. This work bridges the gap between atomic and molecular metrology based on lattice-clock techniques, yielding new understanding of long-range interatomic interactions and placing ultracold molecules at the forefront of precision measurements.Comment: 12 pages, 6 figure

    High-precision spectroscopy of ultracold molecules in an optical lattice

    Get PDF
    The study of ultracold molecules tightly trapped in an optical lattice can expand the frontier of precision measurement and spectroscopy, and provide a deeper insight into molecular and fundamental physics. Here we create, probe, and image microkelvin 88^{88}Sr2_2 molecules in a lattice, and demonstrate precise measurements of molecular parameters as well as coherent control of molecular quantum states using optical fields. We discuss the sensitivity of the system to dimensional effects, a new bound-to-continuum spectroscopy technique for highly accurate binding energy measurements, and prospects for new physics with this rich experimental system.Comment: 12 pages, 4 figure

    Statistical Mechanics and Lorentz Violation

    Full text link
    The theory of statistical mechanics is studied in the presence of Lorentz-violating background fields. The analysis is performed using the Standard-Model Extension (SME) together with a Jaynesian formulation of statistical inference. Conventional laws of thermodynamics are obtained in the presence of a perturbed hamiltonian that contains the Lorentz violating terms. As an example, properties of the nonrelativistic ideal gas are calculated in detail. To lowest order in Lorentz violation, the scalar thermodynamic variables are only corrected by a rotationally invariant combination of parameters that mimics a (frame dependent) effective mass. Spin couplings can induce a temperature independent polarization in the classical gas that is not present in the conventional case. Precision measurements in the residual expectation values of the magnetic moment of Fermi gases in the limit of high temperature may provide interesting limits on these parameters.Comment: 7 pages, revte

    Optical Production of Stable Ultracold 88^{88}Sr2_2 Molecules

    Full text link
    We have produced large samples of ultracold 88^{88}Sr2_2 molecules in the electronic ground state in an optical lattice. The molecules are bound by 0.05 cm−1^{-1} and are stable for several milliseconds. The fast, all-optical method of molecule creation via intercombination line photoassociation relies on a near-unity Franck-Condon factor. The detection uses a weakly bound vibrational level corresponding to a very large dimer. This is the first of two steps needed to create Sr2_2 in the absolute ground quantum state. Lattice-trapped Sr2_2 is of interest to frequency metrology and ultracold chemistry.Comment: 5 pages, 3 figure

    Agriculture, meteorology and water quality in Ireland: a regional evaluation of pressures and pathways of nutrient loss to water

    Get PDF
    peer-reviewedThe main environmental impact of Irish agriculture on surface and ground water quality is the potential transfer of nutrients to water. Soil water dynamics mediate the transport of nutrients to water, and these dynamics in turn depend on agro-meteorological conditions, which show large variations between regions, seasons and years. In this paper we quantify and map the spatio-temporal variability of agro-meteorological factors that control nutrient pressures and pathways of nutrient loss. Subsequently, we evaluate their impact on the water quality of Irish rivers. For nitrogen, pressure and pathways factors coincide in eastern and southern areas, which is reflected in higher nitrate levels of the rivers in these regions. For phosphorus, pathway factors are most pronounced in north-western parts of the country. In south-eastern parts, high pressure factors result in reduced biological water quality. These regional differences require that farm practices be customised to reflect the local risk of nutrient loss to water. Where pathways for phosphorus loss are present almost year-round—as is the case in most of the north-western part of the country—build-up of pressures should be prevented, or ameliorated where already high. In south-eastern areas, spatio-temporal coincidence of nutrient pressures and pathways should be prevented, which poses challenges to grassland management
    • …
    corecore