4,008 research outputs found

    Quantum search algorithms on a regular lattice

    Full text link
    Quantum algorithms for searching one or more marked items on a d-dimensional lattice provide an extension of Grover's search algorithm including a spatial component. We demonstrate that these lattice search algorithms can be viewed in terms of the level dynamics near an avoided crossing of a one-parameter family of quantum random walks. We give approximations for both the level-splitting at the avoided crossing and the effectively two-dimensional subspace of the full Hilbert space spanning the level crossing. This makes it possible to give the leading order behaviour for the search time and the localisation probability in the limit of large lattice size including the leading order coefficients. For d=2 and d=3, these coefficients are calculated explicitly. Closed form expressions are given for higher dimensions

    Realization of generalized quantum searching using nuclear magnetic resonance

    Full text link
    According to the theoretical results, the quantum searching algorithm can be generalized by replacing the Walsh-Hadamard(W-H) transform by almost any quantum mechanical operation. We have implemented the generalized algorithm using nuclear magnetic resonance techniques with a solution of chloroform molecules. Experimental results show the good agreement between theory and experiment.Comment: 11 pages,3 figure. Accepted by Phys. Rev. A. Scheduled Issue: 01 Mar 200

    Spatial quantum search in a triangular network

    Full text link
    The spatial search problem consists in minimizing the number of steps required to find a given site in a network, under the restriction that only oracle queries or translations to neighboring sites are allowed. We propose a quantum algorithm for the spatial search problem on a triangular lattice with N sites and torus-like boundary conditions. The proposed algortithm is a special case of the general framework for abstract search proposed by Ambainis, Kempe and Rivosh [AKR05] (AKR) and Tulsi [Tulsi08], applied to a triangular network. The AKR-Tulsi formalism was employed to show that the time complexity of the quantum search on the triangular lattice is O(sqrt(N logN)).Comment: 10 pages, 4 Postscript figures, uses sbc-template.sty, appeared in Annals of WECIQ 2010, III Workshop of Quantum Computation and Quantum Informatio

    Grover's Quantum Search Algorithm for an Arbitrary Initial Mixed State

    Full text link
    The Grover quantum search algorithm is generalized to deal with an arbitrary mixed initial state. The probability to measure a marked state as a function of time is calculated, and found to depend strongly on the specific initial state. The form of the function, though, remains as it is in the case of initial pure state. We study the role of the von Neumann entropy of the initial state, and show that the entropy cannot be a measure for the usefulness of the algorithm. We give few examples and show that for some extremely mixed initial states carrying high entropy, the generalized Grover algorithm is considerably faster than any classical algorithm.Comment: 4 pages. See http://www.cs.technion.ac.il/~danken/MSc-thesis.pdf for extended discussio

    A General SU(2) Formulation for Quantum Searching with Certainty

    Get PDF
    A general quantum search algorithm with arbitrary unitary transformations and an arbitrary initial state is considered in this work. To serach a marked state with certainty, we have derived, using an SU(2) representation: (1) the matching condition relating the phase rotations in the algorithm, (2) a concise formula for evaluating the required number of iterations for the search, and (3) the final state after the search, with a phase angle in its amplitude of unity modulus. Moreover, the optimal choices and modifications of the phase angles in the Grover kernel is also studied.Comment: 8 pages, 2 figure

    Characterization of pure quantum states of multiple qubits using the Groverian entanglement measure

    Full text link
    The Groverian entanglement measure, G(psi), is applied to characterize a variety of pure quantum states |psi> of multiple qubits. The Groverian measure is calculated analytically for certain states of high symmetry, while for arbitrary states it is evaluated using a numerical procedure. In particular, it is calculated for the class of Greenberger-Horne-Zeilinger states, the W states as well as for random pure states of n qubits. The entanglement generated by Grover's algorithm is evaluated by calculating G(psi) for the intermediate states that are obtained after t Grover iterations, for various initial states and for different sets of the marked states.Comment: 28 pages, 5 figure

    Indications of superconductivity in doped highly oriented pyrolytic graphite

    Full text link
    We have observed possible superconductivity using standard resistance vs. temperature techniques in phosphorous ion implanted Highly Oriented Pyrolytic Graphite. The onset appears to be above 100 K and quenching by an applied magnetic field has been observed. The four initial boron implanted samples showed no signs of becoming superconductive whereas all four initial and eight subsequent samples that were implanted with phosphorous showed at least some sign of the existence of small amounts of the possibly superconducting phases. The observed onset temperature is dependent on both the number of electron donors present and the amount of damage done to the graphene sub-layers in the Highly Oriented Pyrolytic Graphite samples. As a result the data appears to suggest that the potential for far higher onset temperatures in un-damaged doped graphite exists.Comment: 7 pages, 1 table, 5 figures, 11 references, Acknowledgments section was correcte

    Single-Step Quantum Search Using Problem Structure

    Get PDF
    The structure of satisfiability problems is used to improve search algorithms for quantum computers and reduce their required coherence times by using only a single coherent evaluation of problem properties. The structure of random k-SAT allows determining the asymptotic average behavior of these algorithms, showing they improve on quantum algorithms, such as amplitude amplification, that ignore detailed problem structure but remain exponential for hard problem instances. Compared to good classical methods, the algorithm performs better, on average, for weakly and highly constrained problems but worse for hard cases. The analytic techniques introduced here also apply to other quantum algorithms, supplementing the limited evaluation possible with classical simulations and showing how quantum computing can use ensemble properties of NP search problems.Comment: 39 pages, 12 figures. Revision describes further improvement with multiple steps (section 7). See also http://www.parc.xerox.com/dynamics/www/quantum.htm

    Algebraic analysis of quantum search with pure and mixed states

    Full text link
    An algebraic analysis of Grover's quantum search algorithm is presented for the case in which the initial state is an arbitrary pure quantum state of n qubits. This approach reveals the geometrical structure of the quantum search process, which turns out to be confined to a four-dimensional subspace of the Hilbert space. This work unifies and generalizes earlier results on the time evolution of the amplitudes during the quantum search, the optimal number of iterations and the success probability. Furthermore, it enables a direct generalization to the case in which the initial state is a mixed state, providing an exact formula for the success probability.Comment: 13 page

    The Precise Formula in a Sine Function Form of the norm of the Amplitude and the Necessary and Sufficient Phase Condition for Any Quantum Algorithm with Arbitrary Phase Rotations

    Full text link
    In this paper we derived the precise formula in a sine function form of the norm of the amplitude in the desired state, and by means of he precise formula we presented the necessary and sufficient phase condition for any quantum algorithm with arbitrary phase rotations. We also showed that the phase condition: identical rotation angles, is a sufficient but not a necessary phase condition.Comment: 16 pages. Modified some English sentences and some proofs. Removed a table. Corrected the formula for kol on page 10. No figure
    • …
    corecore