807 research outputs found

    Microscopic Enhancement of Heavy-Element Production

    Get PDF
    Realistic fusion barriers are calculated in a macroscopic-microscopic model for several soft-fusion heavy-ion reactions leading to heavy and superheavy elements. The results obtained in such a realistic picture are very different from those obtained in a purely macroscopic model. For reactions on 208:Pb targets, shell effects in the entrance channel result in fusion-barrier energies at the touching point that are only a few MeV higher than the ground state for compound systems near Z = 110. The entrance-channel fragment-shell effects remain far inside the touching point, almost to configurations only slightly more elongated than the ground-state configuration, where the fusion barrier has risen to about 10 MeV above the ground-state energy. Calculated single-particle level diagrams show that few level crossings occur until the peak in the fusion barrier very close to the ground-state shape is reached, which indicates that dissipation is negligible until very late in the fusion process. Whereas the fission valley in a macroscopic picture is several tens of MeV lower in energy than is the fusion valley, we find in the macroscopic-microscopic picture that the fission valley is only about 5 MeV lower than the fusion valley for soft-fusion reactions leading to compound systems near Z = 110. These results show that no significant ``extra-extra-push'' energy is needed to bring the system inside the fission saddle point and that the typical reaction energies for maximum cross section in heavy-element synthesis correspond to only a few MeV above the maximum in the fusion barrier.Comment: 7 pages. LaTeX. Submitted to Zeitschrift fur Physik A. 5 figures not included here. Complete preprint, including device-independent (dvi), PostScript, and LaTeX versions of the text, plus PostScript files of the figures, available at http://t2.lanl.gov/publications/publications.html or at ftp://t2.lanl.gov/pub/publications/mehe

    Activation of additional energy dissipation processes in the magnetization dynamics of epitaxial chromium dioxide films

    Full text link
    The precessional magnetization dynamics of a chromium dioxide(100)(100) film is examined in an all-optical pump-probe setup. The frequency dependence on the external field is used to extract the uniaxial in-plane anisotropy constant. The damping shows a strong dependence on the frequency, but also on the laser pump fluency, which is revealed as an important experiment parameter in this work: above a certain threshold further channels of energy dissipation open and the damping increases discontinuously. This behavior might stem from spin-wave instabilities

    Mass and Lifetime Measurements of Exotic Nuclei in Storage Rings

    Get PDF

    Alpha-decay properties of superheavy elements Z=113125Z=113-125 in the relativistic mean-field theory with vector self-coupling of ω\omega meson

    Full text link
    We have investigated properties of α\alpha-decay chains of recently produced superheavy elements Z=115 and Z=113 using the new Lagrangian model NL-SV1 with inclusion of the vector self-coupling of ω\omega meson in the framework of the relativistic mean-field theory. It is shown that the experimentally observed alpha-decay energies and half-lives are reproduced well by this Lagrangian model. Further calculations for the heavier elements with Z=117-125 show that these nuclei are superdeformed with a prolate shape in the ground state. A superdeformed shell-closure at Z=118 lends an additional binding and an extra stability to nuclei in this region. Consequently, it is predicted that the corresponding QαQ_\alpha values provide α\alpha-decay half-lives for heavier superheavy nuclei within the experimentally feasible conditions. The results are compared with those of macroscopic-microscopic approaches. A perspective of the difference in shell effects amongst various approaches is presented and its consequences on superheavy nuclei are discussed.Comment: Revised version, 14 pages, 12 eps figures. To appear in PRC. Discussion on shell effects is shortened in the revised version. However, commonality of the role of shell effects in extreme superheavy regions and in the regions near the r-process path is maintained. Existence of a secondary superdeformed minimum for Z=113 is verified with another Lagrangian se

    Connecting the timescales in picosecond remagnetization experiments

    Full text link
    In femtosecond demagnetization experiments, one gains access to the elementary relaxation mechanisms of a magnetically ordered spin system on a time scale of 100 fs. Following these experiments, we report a combined micromagnetic and experimental study that connects the different regimes known from all-optical pump-probe experiments by employing a simple micromagnetic model. We identify spin-wave packets on the nanometer scale that contribute to the remagnetization process on the intermediate time scale between single-spin relaxation and collective precession.Comment: 12 pages, 3 figures, submitted to Phys. Rev. Lett, changes made with regard to review proces

    Gross properties of exotic nuclei investigated at storage rings and ion traps

    Get PDF
    Properties of exotic nuclei like atomic masses, decay modes, and half-lives can be ideally investigated in storage rings and ion traps. Some experiments can be carried out under conditions which prevail in hot stellar plasmas. The experimental potential of storage and cooling of exotic nuclei is illustrated with recent experimental results and an outlook to future experiments is presented

    Coherent ultrafast spin-dynamics probed in three dimensional topological insulators

    Get PDF
    Topological insulators are candidates to open up a novel route in spin based electronics. Different to traditional ferromagnetic materials, where the carrier spin-polarization and magnetization are based on the exchange interaction, the spin properties in topological insulators are based on the coupling of spin- and orbit interaction connected to its momentum. Specific ways to control the spin-polarization with light have been demonstrated: the energy momentum landscape of the Dirac cone provides spin-momentum locking of the charge current and its spin. The directionality of spin and momentum, as well as control with light has been demonstrated. Here we demonstrate a coherent femtosecond control of spin-polarization for states in the valence band at around the Dirac cone.Comment: 14 pages, 4 figure
    corecore