807 research outputs found
Microscopic Enhancement of Heavy-Element Production
Realistic fusion barriers are calculated in a macroscopic-microscopic model
for several soft-fusion heavy-ion reactions leading to heavy and superheavy
elements. The results obtained in such a realistic picture are very different
from those obtained in a purely macroscopic model. For reactions on 208:Pb
targets, shell effects in the entrance channel result in fusion-barrier
energies at the touching point that are only a few MeV higher than the ground
state for compound systems near Z = 110. The entrance-channel fragment-shell
effects remain far inside the touching point, almost to configurations only
slightly more elongated than the ground-state configuration, where the fusion
barrier has risen to about 10 MeV above the ground-state energy. Calculated
single-particle level diagrams show that few level crossings occur until the
peak in the fusion barrier very close to the ground-state shape is reached,
which indicates that dissipation is negligible until very late in the fusion
process. Whereas the fission valley in a macroscopic picture is several tens of
MeV lower in energy than is the fusion valley, we find in the
macroscopic-microscopic picture that the fission valley is only about 5 MeV
lower than the fusion valley for soft-fusion reactions leading to compound
systems near Z = 110. These results show that no significant
``extra-extra-push'' energy is needed to bring the system inside the fission
saddle point and that the typical reaction energies for maximum cross section
in heavy-element synthesis correspond to only a few MeV above the maximum in
the fusion barrier.Comment: 7 pages. LaTeX. Submitted to Zeitschrift fur Physik A. 5 figures not
included here. Complete preprint, including device-independent (dvi),
PostScript, and LaTeX versions of the text, plus PostScript files of the
figures, available at http://t2.lanl.gov/publications/publications.html or at
ftp://t2.lanl.gov/pub/publications/mehe
Activation of additional energy dissipation processes in the magnetization dynamics of epitaxial chromium dioxide films
The precessional magnetization dynamics of a chromium dioxide film is
examined in an all-optical pump-probe setup. The frequency dependence on the
external field is used to extract the uniaxial in-plane anisotropy constant.
The damping shows a strong dependence on the frequency, but also on the laser
pump fluency, which is revealed as an important experiment parameter in this
work: above a certain threshold further channels of energy dissipation open and
the damping increases discontinuously. This behavior might stem from spin-wave
instabilities
Alpha-decay properties of superheavy elements in the relativistic mean-field theory with vector self-coupling of meson
We have investigated properties of -decay chains of recently produced
superheavy elements Z=115 and Z=113 using the new Lagrangian model NL-SV1 with
inclusion of the vector self-coupling of meson in the framework of the
relativistic mean-field theory. It is shown that the experimentally observed
alpha-decay energies and half-lives are reproduced well by this Lagrangian
model. Further calculations for the heavier elements with Z=117-125 show that
these nuclei are superdeformed with a prolate shape in the ground state. A
superdeformed shell-closure at Z=118 lends an additional binding and an extra
stability to nuclei in this region. Consequently, it is predicted that the
corresponding values provide -decay half-lives for heavier
superheavy nuclei within the experimentally feasible conditions. The results
are compared with those of macroscopic-microscopic approaches. A perspective of
the difference in shell effects amongst various approaches is presented and its
consequences on superheavy nuclei are discussed.Comment: Revised version, 14 pages, 12 eps figures. To appear in PRC.
Discussion on shell effects is shortened in the revised version. However,
commonality of the role of shell effects in extreme superheavy regions and in
the regions near the r-process path is maintained. Existence of a secondary
superdeformed minimum for Z=113 is verified with another Lagrangian se
Connecting the timescales in picosecond remagnetization experiments
In femtosecond demagnetization experiments, one gains access to the
elementary relaxation mechanisms of a magnetically ordered spin system on a
time scale of 100 fs. Following these experiments, we report a combined
micromagnetic and experimental study that connects the different regimes known
from all-optical pump-probe experiments by employing a simple micromagnetic
model. We identify spin-wave packets on the nanometer scale that contribute to
the remagnetization process on the intermediate time scale between single-spin
relaxation and collective precession.Comment: 12 pages, 3 figures, submitted to Phys. Rev. Lett, changes made with
regard to review proces
Gross properties of exotic nuclei investigated at storage rings and ion traps
Properties of exotic nuclei like atomic masses, decay modes, and half-lives can be ideally investigated in storage rings and ion traps. Some experiments can be carried out under conditions which prevail in hot stellar plasmas. The experimental potential of storage and cooling of exotic nuclei is illustrated with recent experimental results and an outlook to future experiments is presented
Coherent ultrafast spin-dynamics probed in three dimensional topological insulators
Topological insulators are candidates to open up a novel route in spin based
electronics. Different to traditional ferromagnetic materials, where the
carrier spin-polarization and magnetization are based on the exchange
interaction, the spin properties in topological insulators are based on the
coupling of spin- and orbit interaction connected to its momentum. Specific
ways to control the spin-polarization with light have been demonstrated: the
energy momentum landscape of the Dirac cone provides spin-momentum locking of
the charge current and its spin. The directionality of spin and momentum, as
well as control with light has been demonstrated. Here we demonstrate a
coherent femtosecond control of spin-polarization for states in the valence
band at around the Dirac cone.Comment: 14 pages, 4 figure
- …