595 research outputs found
Conductor losses calculation in two-dimensional simulations of H-plane rectangular waveguides
This paper presents a novel numerical approach to simulate H-plane rectangular-waveguide microwave circuits considering a reduced quasi-2D simulation domain with benefits for computational cost and time. With the aim to evaluate the attenuation of the full height 3D component, we propose a modified expression for the waveguide top/bottom wall conductivity. Numerical 2D simulations are validated against results from full wave 3-D commercial electromagnetic simulator. After a benchmark on a simple straight waveguide model, the method has been successfully applied to an asymmetric un-balanced power splitter, where an accurate power loss prediction is mandatory. Simulation time and memory consumption can be reduced by a factor ten and seven respectively, in comparison with complete 3D geometries. Finally, we show that, also for quasi-2D E-bend waveguide, a case where the translational H-plane symmetry is broken, the error on conductor losses computation is mitigated by our approach since the method remains still valid in a first approximation
Multivariate negative aging in an exchangeable model of heterogeneity
We introduce an exchangeable model, which accounts for heterogeneity and dependence at a time. Based on this model, we show how situations of multivariate negative ageing arise in a natural way from conditions of heterogeneity
Study of charge state enhancement by means of the coupling of a Laser Ion Source to the ECR ion source SERSE
The possibility to produce intense ion beams from solid elements, by using a pulsed Laser ion source as the first stage of the superconducting ECR ion source SERSE is discussed in the following. The Laser ion source may be used to produce negative or positive ions and electrons that are injected into the plasma of SERSE. The design of the experimental setup and the study of the extraction of ions from a target by means of Nd:Yag laser irradiation are briefly described. This Laser ion source will be located in the plasma chamber of the source SERSE, in presence of its magnetic field. A simple evaluation of the charge state enhancement inside the ECR plasma is also presented in the following
Laser-generated nanoparticles to change physical properties of solids, liquids and gases
Synthesis of nanoparticles was possible employing a Nd: YAG pulsed laser at fundamental harmonic. The production of nanoparticles in water depends mainly on the laser parameters (pulse duration, energy, wavelength), the irradiation conditions (focal spot, repetition rate, irradiation time) and the medium where the ablation occurs (solid target, water, solution concentration). The nanoparticles can be introduced in solids, liquids or gases to change many physical characteristics. The optical properties of polymers and solutions, the wetting ability of liquids, the electron density of laser-generated plasma, represent some examples that can be controlled by the concentration of metallic nanoparticles (Au, Ag, Ti, Cu). Some bio-medical applications will be presented and discussed
Protons accelerated in the target normal sheath acceleration regime by a femtosecond laser
Advanced targets based on thin films of graphene oxide covered by metallic layers have been irradiated at high laser intensity (∼1019 W/cm2) with 40 fs laser pulses to investigate the forward ion acceleration in the target normal sheath acceleration regime. A time-of-flight technique was employed with silicon-carbide detectors and ion collectors as fast on-line plasma diagnostics. At the optimized conditions of the laser focus position with respect to the target surface was measured the maximum proton energy using Au metallic films. A maximum proton energy of 2.85 MeV was measured using the Au metallization of 200 nm. The presence of graphene oxide facilitates the electron crossing of the foil minimizing the electron scattering and increasing the electric field driving the ion acceleration. The effect of plasma electron density control using the graphene oxide is presented and discussed
Production and characterization of micro-size pores for ion track etching applications
For many years the applications of ion track etch materials have increased considerably, like charged particles detection, molecular identification with nanopores, ion track filters, magnetic studies with nanowires and so on. Over the materials generally used as track detector, the Poly-Allyl-Diglycol Carbonate (PADC), offers many advantages, like its nearly 100 % detection efficiency for charged particle, a high resistance to harsh environment, the lowest detection threshold, a high abrasion resistance and a low production costs. All of these properties have made it particularly attractive material, even if due to its brittleness, obtaining a thin film (less than 500 μm) is still a challenge. In this work, PADC foils have been exposed to a-particles emitted by a thin radioactive source of 241Am and to C ions from the Tandetron 4130 MC accelerator. The latent tracks generated in the polymer have been developed using a standard etching procedure in 6.25 NaOH solution. The dependence of the ion tracks' geometry on the ion beam energy and fluence has been evaluated combining the information obtained through a semiautomatic computer script that selects the etched ion tracks according to their diameter and mean grey value and nanometric resolution images by atomic force microscopy
Low power RF test of a quadrupole-free X-Band mode launcher for high brightness applications
In this work we present the low power RF characterization of a novel TM01 X-band mode launcher for the new generation of high brightness RF photo-injectors. The proposed mode launcher exploits a fourfold symmetry which minimizes both the dipole and the quadrupole fields in order to mitigate the emittance growth in the early stages of the acceleration process. Two identical aluminum mode launchers have been assembled and measured in back-to-back configurations for three different central waveguide lengths. From the back-to-back results we infer the performance of each mode launcher. The low power RF test, performed at the Istituto Nazionale di Fisica Nucleare Laboratori Nazionali del Sud (INFN-LNS), validate both the numerical simulations and the quality of fabrication. An oxygen-free high-conductivity copper version of the device is being manufactured for high power and ultra high vacuum tests that are planned to be conducted at SLAC
- …