214 research outputs found

    From Neutral Aniline to Aniline Trication: A Computational and Experimental Study

    Get PDF
    We report density functional theory computations and photoionization mass spectrometry measurements of aniline and its positively charged ions. The geometrical structures and properties of the neutral, singly, doubly, and triply positively charged aniline are computed using density functional theory with the generalized gradient approximation. At each charge, there are multiple isomers closely spaced in total energy. Whereas the lowest energy states of both neutral and cation have the same topology C6H5–NH2, the dication and trication have the C5NH5–CH2 topology with the nitrogen atom in the meta and para positions, respectively. We compute the dissociation pathways of all four charge states to NH or NH+ and NH2 or NH2+, depending on the initial charge of the aniline precursor. Dissociation leading to the formation of NH (from the neutral and cation) and NH+ (from the dication and trication) proceeds through multiple transition states. On the contrary, the dissociation of NH2 (from the neutral, cation) and NH2+ (from the dication and trication) is found to proceed without an activation energy barrier. The trication was found to be stable toward abstraction on NH+ and NH2+by 0.96 eV and 0.18 eV, respectively, whereas the proton affinity of the trication is substantially higher, 1.98 eV. The mass spectra of aniline were recorded with 1300 nm, 20 fs pulses over the peak intensity range of 1 x 1013 W cm-2 to 3 x 1014W cm-2. The analysis of the mass spectra suggests high stability of both dication and trication to fragmentation. The formation of the fragment NH+ and NH2+ ions is found to proceed via Coulomb explosion

    Dissociation of Singly and Multiply Charged Nitromethane Cations: Femtosecond Laser Mass Spectrometry and Theoretical Modeling

    Get PDF
    Dissociation pathways of singly- and multiply charged gas-phase nitromethane cations were investigated with strong-field laser photoionization mass spectrometry and density functional theory computations. There are multiple isomers of the singly charged nitromethane radical cation, several of which can be accessed by rearrangement of the parent CH3–NO2 structure with low energy barriers. While direct cleavage of the C–N bond from the parent nitromethane cation produces NO2+ and CH3+, rearrangement prior to dissociation accounts for fragmentation products including NO+, CH2OH+, and CH2NO+. Extensive Coulomb explosion in fragment ions observed at high laser intensity indicates that rapid dissociation of multiply charged nitromethane cations produces additional species such as CH2+, H+, and NO22+.  On the basis of analysis of Coulomb explosion in the mass spectral signals and pathway calculations, sufficiently intense laser fields can remove four or more electrons from nitromethane

    Origin of the anomalous magnetic behavior of the Fe13+ cluster

    Get PDF
    By using density functional theory, we show that the exceptionally low value of the total magnetic moment of Fe13+ observed in an experiment [Phys. Rev. Lett. 108, 057201 (2012)] is not due to antiferromagnetic coupling between the spins of the core and surface atoms as hypothesized but is due to the symmetry-driven quenching of the local spin moments of all atoms with the largest quenching observed for the central atom. Our study of Fe12+, Fe13+, Fe14+, and their neutral parents reveals that the total magnetic moment of Fe13+ decreases by 9ÎŒB with respect to that of neutral Fe13, whereas, the changes are 1ÎŒB and 3ÎŒB for Fe12+ and Fe14+, respectively

    Electronic structure and chemical bonding of 3d-metal dimers ScX, X=Sc-Zn

    Get PDF
    The electronic and geometrical structures of the ground and excited states of the homonuclear Sc2, mixed ScTi, ScV, ScCr, ScMn, ScFe, ScCo, ScNi, ScCu, and ScZn 3d-metal dimers and their anions have been calculated using the density functional theory with generalized gradient approximation for the exchange-correlation potential. The ground states of the neutral dimers are found to be 5Σ−u (Sc2), 6ÎŁ+ (ScTi), 7ÎŁ+ (ScV), 4ÎŁ+ (ScCr), 3ÎŁ+ (ScMn), 2Δ(ScFe), 1ÎŁ+ (ScCo), 2ÎŁ+ (ScNi), 3Δ(ScCu), and 4ÎŁ+ (ScZn). A natural bond analysis reveals an antiferrimagnetic spin coupling in the ground states of ScCr, ScMn, and ScFe. This is due to the electron transfer from Sc to the opposite atom and specific bond formations. While each dimer has a unique chemical bonding pattern, most curious is the localization of two 4s electrons at both atomic sites in the ground 5Σ−u state of Sc2, which leads to formation of two lone pairs and the bonding scheme: (3d+3d)3α(4s+4s)1ÎČ. No appreciable sd hybridization is found for the ground states of the ScX dimers except for ScNi. Even though the electron affinities of the ScX dimers are relatively low and do not exceed 1 eV, each ScX− (except ScCo−) possesses at least two states stable towards detachment of an extra electron

    Electronic structure of chromium oxides, CrOn- and CrOn (n=1-5) from photoelectron spectroscopy and density functional theory calculations

    Get PDF
    The electronic structure of CrO−n and CrOn (n=1–5) was investigated using anion photoelectron spectroscopy and density functional theory. Photoelectron spectra of CrO−n were obtained at several photon energies and yielded electron affinities, vibrational and electronic structure information about the neutral CrOn species. Density functional theory calculations were carried out for both the neutrals and anions and were used to interpret the experimental spectra. Several low-lying electronic states of CrO were observed and assigned from photodetachment of the CrO− ground state(6∑+) and an excited state (4∏), which is only 0.1 eV higher. The main spectral features of CrO−2 were interpreted based on a C2v CrO−2 (4B1). A very weak Cr(O2)− isomer was also observed with lower electron binding energies. Relatively simple and vibrationally resolved spectra were observed for CrO−3, which was determined to be D3h. The CrO3 neutral was calculated to be C3v with the Cr atom slightly out of the plane of the three O atoms. The spectrum of CrO−4 revealed a very high electron binding energy. Several isomers of CrO−4 were predicted and the ground state has a distorted tetrahedral structure (C2) without any O–O bonding. Only one stable structure was predicted forCrO−5 with a superoxo O2 bonded to a C3v CrO3

    An all-electron density functional theory study of the structure and properties of the neutral and singly charged M-12 and M-13 clusters: M = Sc-Zn

    Get PDF
    The electronic and geometrical structures of the M 12 and M 13 clusters where M = Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, and Zn along with their singly negatively and positively charged ions are studied using all-electron density functional theory within the generalized gradient approximation. The geometries corresponding to the lowest total energy states of singly and negatively charged ions of V13, Mn12, Co12, Ni 13, Cu 13, Zn 12, and Zn 13 are found to be different from the geometries of the corresponding neutral parents. The computed ionizationenergies of the neutrals, vertical electron detachment energies from the anions, and energies required to remove a single atom from the M 13 and M 13 + clusters are in good agreement with experiment. The change in a total spin magnetic moment of the cation or anion with respect to a total spin magnetic moment of the corresponding neutral is consistent with the one-electron model in most cases, i.e., they differ by ±1.0 ÎŒ B. Exceptions are found only for Sc12 −, Ti12 +, Mn12 −, Mn12 +, Fe12 −, Fe13 +, and Co12 +

    Competition between linear and cyclic structures in monochromium carbide clusters CrCn- and CrCn (n=2-8): A photoelectron spectroscopy and density functional study

    Get PDF
    Photoelectron spectroscopy (PES) is combined with density functional theory (DFT) to study the monochromium carbide clusters CrC−n and CrCn (n=2–8). Well-resolved PES spectra were obtained, yielding structural, electronic, and vibrational information about both the anionic and neutral clusters. Experimental evidence was observed for the coexistence of two isomers for CrC−2, CrC−3, CrC−4, and CrC−6. Sharp and well-resolved PES spectra were observed for CrC−n (n=4,6,8), whereas broad spectra were observed for CrC−5 and CrC−7. Extensive DFT calculations using the generalized gradient approximation were carried out for the ground and low-lying excited states of all the CrC−n and CrCn species, as well as coupled-cluster calculations for CrC−2 and CrC2. Theoretical electron affinities and vertical detachment energies were calculated and compared with the experimental data to help the assignment of the ground states and obtain structural information. We found that CrC−2 and CrC−3 each possess a close-lying cyclic and linear structure, which were both populated experimentally. For the larger CrC−n clusters with n=4, 6, 8, linear structures are the overwhelming favorite, giving rise to the sharp PES spectral features. CrC−7 was found to have a cyclic structure. The broad PES spectra of CrC−5 suggested a cyclic structure, whereas the DFT results predicted a linear one

    Periodic table of 3d-metal dimers and their ions

    Get PDF
    The ground states of the mixed 3d-metal dimers TiV, TiCr, TiMn, TiFe, TiCo, TiNi, TiCu, TiZn, VCr, VMn, VFe, VCo, VNi, VCu, VZn, CrMn, CrFe, CrCo, CrNi, CrCu, CrZn, MnFe, MnCo, MnNi, MnCu, MnZn, FeCo, FeNi, FeCu, FeZn, CoNi, CoCu, CoZn, NiCu, NiZn, and CuZn along with their singly negatively and positively charged ions are assigned based on the results of computations using density functional theory with generalized gradient approximation for the exchange-correlation functional. Except for TiCo and CrMn, our assignment agrees with experiment. Computed spectroscopic constants (re,ωe,Do) are in fair agreement with experiment. The ground-state spin multiplicities of all the ions are found to differ from the spin multiplicities of the corresponding neutral parents by ±1. Except for TiV, MnFe, and MnCu, the number of unpaired electrons, N, in a neutral ground-state dimer is either N1+N2 or |N1−N2|,where N1 and N2 are the numbers of unpaired 3d electrons in the 3dn4s1 occupation of the constituent atoms. Combining the present and previous results obtained at the same level of theory for homonuclear [Gutsev and Bauschlicher, J. Phys. Chem. A 107, 4755 (2003)] 3d-metal and ScX (X=Ti–Zn) dimers [Gutsev, Bauschlicher, and Andrews, in Theoretical Prospects of Negative Ions, edited by J. Kalcher (Research Signpost, Trivandrum, 2002), pp. 43–60] allows one to construct “periodic” tables of all 3d-metal dimers along with their singly charged ions

    Electron affinities of the first- and second- row atoms: benchmark ab initio and density functional calculations

    Full text link
    A benchmark ab initio and density functional (DFT) study has been carried out on the electron affinities of the first- and second-row atoms. The ab initio study involves basis sets of spdfghspdfgh and spdfghispdfghi quality, extrapolations to the 1-particle basis set limit, and a combination of the CCSD(T), CCSDT, and full CI electron correlation methods. Scalar relativistic and spin-orbit coupling effects were taken into account. On average, the best ab initio results agree to better than 0.001 eV with the most recent experimental results. Correcting for imperfections in the CCSD(T) method improves the mean absolute error by an order of magnitude, while for accurate results on the second-row atoms inclusion of relativistic corrections is essential. The latter are significantly overestimated at the SCF level; for accurate spin-orbit splitting constants of second-row atoms inclusion of (2s,2p) correlation is essential. In the DFT calculations it is found that results for the 1st-row atoms are very sensitive to the exchange functional, while those for second-row atoms are rather more sensitive to the correlation functional. While the LYP correlation functional works best for first-row atoms, its PW91 counterpart appears to be preferable for second-row atoms. Among ``pure DFT'' (nonhybrid) functionals, G96PW91 (Gill 1996 exchange combined with Perdew-Wang 1991 correlation) puts in the best overall performance. The best results overall are obtained with the 1-parameter hybrid modified Perdew-Wang (mPW1) exchange functionals of Adamo and Barone [J. Chem. Phys. {\bf 108}, 664 (1998)], with mPW1LYP yielding the best results for first-row, and mPW1PW91 for second-row atoms. Indications exist that a hybrid of the type aa mPW1LYP + (1−a)(1-a) mPW1PW91 yields better results than either of the constituent functionals.Comment: Phys. Rev. A, in press (revised version, review of issues concerning DFT and electron affinities added
    • 

    corecore