104 research outputs found

    Hardwired MPEG-4 repetitive padding

    Full text link

    THORACOSCOPY - DIAGNOSTIC AND THERAPEUTIC OPPORTUNITIES IN SURGICAL CHEST DISEASES

    Get PDF
    No abstrac

    hArtes: Hardware-Software Codesign for Heterogeneous Multicore Platforms

    Get PDF
    Developing heterogeneous multicore platforms requires choosing the best hardware configuration for mapping the application, and modifying that application so that different parts execute on the most appropriate hardware component. The hArtes toolchain provides the option of automatic or semi-automatic support for this mapping. During test and validation on several computation-intensive applications, hArtes achieved substantial speedups and drastically reduced development times

    Predictions for the future of kallikrein-related peptidases in molecular diagnostics

    Get PDF
    Kallikrein-related peptidases (KLKs) form a cancer-related ensemble of serine proteases. This multigene family hosts the most widely used cancer biomarker that is PSA-KLK3, with millions of tests performed annually worldwide. The present report provides an overview of the biomarker potential of the extended KLK family (KLK1-KLK15) in various disease settings and envisages approaches that could lead to additional KLK-driven applications in future molecular diagnostics. Particular focus is given on the inclusion of KLKs into multifaceted cancer biomarker panels that provide enhanced diagnostic, prognostic and/or predictive accuracy in several human malignancies. Such panels have been described so far for prostate, ovarian, lung and colorectal cancers. The role of KLKs as biomarkers in non-malignant disease settings, such as Alzheimer’s disease and multiple sclerosis, is also commented upon. Predictions are given on the challenges and future directions regarding clinically oriented KLK research

    Cancer Biomarker Discovery: The Entropic Hallmark

    Get PDF
    Background: It is a commonly accepted belief that cancer cells modify their transcriptional state during the progression of the disease. We propose that the progression of cancer cells towards malignant phenotypes can be efficiently tracked using high-throughput technologies that follow the gradual changes observed in the gene expression profiles by employing Shannon's mathematical theory of communication. Methods based on Information Theory can then quantify the divergence of cancer cells' transcriptional profiles from those of normally appearing cells of the originating tissues. The relevance of the proposed methods can be evaluated using microarray datasets available in the public domain but the method is in principle applicable to other high-throughput methods. Methodology/Principal Findings: Using melanoma and prostate cancer datasets we illustrate how it is possible to employ Shannon Entropy and the Jensen-Shannon divergence to trace the transcriptional changes progression of the disease. We establish how the variations of these two measures correlate with established biomarkers of cancer progression. The Information Theory measures allow us to identify novel biomarkers for both progressive and relatively more sudden transcriptional changes leading to malignant phenotypes. At the same time, the methodology was able to validate a large number of genes and processes that seem to be implicated in the progression of melanoma and prostate cancer. Conclusions/Significance: We thus present a quantitative guiding rule, a new unifying hallmark of cancer: the cancer cell's transcriptome changes lead to measurable observed transitions of Normalized Shannon Entropy values (as measured by high-throughput technologies). At the same time, tumor cells increment their divergence from the normal tissue profile increasing their disorder via creation of states that we might not directly measure. This unifying hallmark allows, via the the Jensen-Shannon divergence, to identify the arrow of time of the processes from the gene expression profiles, and helps to map the phenotypical and molecular hallmarks of specific cancer subtypes. The deep mathematical basis of the approach allows us to suggest that this principle is, hopefully, of general applicability for other diseases

    CARCINOMA OF THE THYROID GLAND - TENDENCIES IN MORBIDITY, DIAGNOSIS AND SURGICAL TREATMENT

    No full text
    During the period 1987-1997 in the Department of Thoracic Surgery, Medical university of Varna, a total of 917 patients were operated for nodal pathology of the thyroid gland. In 57 cases (6,21 %) carcinoma was found. The epidemiological differences in the beginning and in the end of the studied period, diagnostic problems as well as the tactics icerning the volume of the operative intervention are discussed

    Scalability study of polymorphic register files

    No full text
    We study the scalability of multi-lane 2D Polymorphic Register Files (PRFs) in terms of clock cycle time, chip area and power consumption. We assume an implementation which stores data in a 2D array of linearly addressable memory banks, and consider one single-view and four suitable multi-view parallel access schemes which cover all basic access patterns commonly used in scientific and multimedia applications. The PRF design features 2 read and 1 write ports, targeting the TSMC 90nm ASIC technology. We consider three PRF sizes - 32KB, 128KB and 512KB and four multi-lane configurations - 8 / 16 / 32 and 64 lanes. Synthesis results suggest that the clock frequency varies between 500MHz for a 512KB PRF with 64 vector lanes and 970Mhz for a 32KB / 8-lanes case. Estimated power consumption ranges from less than 300mW (dynamic) and 10mW (leakage) for our 8-lane, 32KB PRF up to 8.7W (dynamic) and 276mW (leakage) for a 512KB with 64 lanes. We also show the correlation among the storage capacity, the number of lanes, and the chip overall area. Furthermore, we also investigated customized addressing functions. Our experimental results suggest up to 21% increase of the clock frequency, and up to 39% combinational hardware area reduction (nearly 10% of the total area) compared to our straightforward implementations. Concerning power, we reduce dynamic power with up to 31% and leakage with nearly 24%

    The hArtes Platform

    No full text
    The hardware platofrm developed in the framework of the hArtes project is described in details
    • …
    corecore