1,544 research outputs found
Thermal Storage for High-Power Small Satellites
As the power levels and sizes of small satellites grow, new capabilities become possible along with new challenges for thermal control. Greater amounts of heat must be transported across longer distances, making it more difficult to control component temperatures using simple, passive systems. This paper describes the performance of an innovative thermal storage technology for small satellite thermal control systems. The thermal storage unit helps maintain temperature stability by efficiently incorporating a solid/liquid phase-change material (PCM).
This paper describes the results of an analysis and testing program that proved the feasibility of the PCM thermal storage concept. We formulated a simple model for a high-power small satellite in an orbital thermal environment. We found that proper selection of the PCM depends on the thermal environment, thermal control system characteristics, and characteristics of the thermal load. The model shows that a properly designed thermal storage system can dramatically reduce temperature variation.
We designed and built a sub-scale PCM thermal storage unit and measured its performance with a heat pipe under conditions that simulate operation in a small satellite thermal control system. Results of these tests demonstrate the capability of the thermal control system to reduce temperature variation during transient operation
The New SPS Extraction Channel for LHC and CNGS
The Large Hadron Collider (LHC) and CERN Neutrino to Gran Sasso (CNGS) projects require the construction of a new fast-extraction system in the long straight section LSS4 of the Super Proton Synchrotron (SPS) at CERN. A conventional DC septum magnet will be used, in conjunction with the installation of horizontal and vertical extraction bumpers, main quadrupoles with enlarged apertures, extraction kicker magnets and additional hardware protection, instrumentation, controls and electronics. The extraction channel must be able to accept the bright LHC proton beam at 450 GeV/c, and also the high intensity, large emittance fixed target CNGS proton beam at the nominal 400 GeV/c extraction momentum. This paper describes the extraction channel to be installed in 2003, and shows how the requirements for both the LHC and CNGS project can be met
Cellular ROS imaging with hydro-Cy3 dye is strongly influenced by mitochondrial membrane potential
Background: Hydrocyanines are widely used as fluorogenic probes to monitor reactive oxygen species (ROS) generation in cells. Their brightness, stability to autoxidation and photobleaching, large signal change upon oxidation, pH independence and red/near infrared emission are particularly attractive for imaging ROS in live tissue. Methods: Using confocal fluorescence microscopy we have examined an interference of mitochondrial membrane potential (ÎΚm) with fluorescence intensity and localisation of a commercial hydro-Cy3 probe in respiring and non-respiring colon carcinoma HCT116 cells. Results: We found that the oxidised (fluorescent) form of hydro-Cy3 is highly homologous to the common ÎΚm-sensitive probe JC-1, which accumulates and aggregates only in âenergisedâ negatively charged mitochondrial matrix. Therefore, hydro-Cy3 oxidised by hydroxyl and superoxide radicals tends to accumulate in mitochondrial matrix, but dissipates and loses brightness as soon as ÎΚm is compromised. Experiments with mitochondrial inhibitor oligomycin and uncoupler FCCP, as well as a common ROS producer paraquat demonstrated that signals of the oxidised hydro-Cy3 probe rapidly and strongly decrease upon mitochondrial depolarisation, regardless of the rate of cellular ROS production. Conclusions: While analysing ROS-derived fluorescence of commercial hydrocyanine probes, an accurate control of ÎΚm is required. General significance: If not accounted for, non-specific effect of mitochondrial polarisation state on the behaviour of oxidised hydrocyanines can cause artefacts and data misinterpretation in ROS studies
Rac Activation Induces NADPH Oxidase Activity in Transgenic COSphox Cells and Level of Superoxide Production is Exchange Factor-Dependent
Transient expression of constitutively active Rac1 derivatives, (G12V) or (Q61L), was sufficient to induce phagocyte NADPH oxidase activity in a COS-7 cell model in which human cDNAs for essential oxidase components, gp91phox, p22phox, p47phox, and p67phox, were expressed as stable transgenes. Expression of constitutively active Rac1 in âCOSphoxâ cells induced translocation of p47phox and p67phox to the membrane. Furthermore, translocation of p47phox was induced in the absence of p67phox expression, even though Rac does not directly bind p47phox. Rac effector domain point substitutions (A27K, G30S, D38A, Y40C), which can selectively eliminate interaction with different effector proteins, impaired Rac1V12-induced superoxide production. Activation of endogenous Rac1 by expression of constitutively active Rac-guanine nucleotide exchange factor (GEF) derivatives was sufficient to induce high level NADPH oxidase activity in COSphox cells. The constitutively active form of the hematopoietic-specific GEF, Vav1, was the most effective at activating superoxide production, despite detection of higher levels of Rac1-GTP upon expression of constitutively active Vav2 or Tiam1 derivatives. These data suggest that Rac can play a dual role in NADPH oxidase activation, both by directly participating in the oxidase complex and by activating signaling events leading to oxidase assembly, and that Vav1 may be the physiologically relevant GEF responsible for activating this Rac-regulated complex
Aspects of topology of condensates and knotted solitons in condensed matter systems
The knotted solitons introduced by Faddeev and Niemi is presently a subject
of great interest in particle and mathematical physics. In this paper we give a
condensed matter interpretation of the recent results of Faddeev and Niemi.Comment: v2: Added a reference to the paper E. Babaev, L.D. Faddeev and A.J.
Niemi cond-mat/0106152 where an exact equivalence was shown between the
two-condensate Ginzburg-Landau model and a version of Faddeev model.
Miscelaneous links related to knotted solitons are available at the author
homepage at http://www.teorfys.uu.se/PEOPLE/egor/ . Animations of knotted
solitons by Hietarinta and Salo are available at
http://users.utu.fi/h/hietarin/knots/c45_p2.mp
Eur J Human Genet
Heterozygous missense mutations in the serine-threonine kinase receptor BMPR1B result typically in brachydactyly type A2 (BDA2), whereas mutations in the corresponding ligand GDF5 cause brachydactyly type C (BDC). Mutations in the GDF inhibitor Noggin (NOG) or activating mutations in GDF5 cause proximal symphalangism (SYM1). Here, we describe a novel mutation in BMPR1B (R486Q) that is associated with either BDA2 or a BDC/SYM1-like phenotype. Functional investigations of the R486Q mutation were performed and compared with the previously reported BDA2-causing mutation R486W and WT BMPR1B. Overexpression of the mutant receptors in chicken micromass cultures resulted in a strong inhibition of chondrogenesis with the R486Q mutant, showing a stronger effect than the R486W mutant. To investigate the consequences of the BMPR1B mutations on the intracellular signal transduction, we used stably transfected C2C12 cells and measured the activity of SMAD-dependent and SMAD-independent pathways. SMAD activation after stimulation with GDF5 was suppressed in both mutants. Alkaline phosphatase induction showed an almost complete loss of activation by both mutants. Our data extend the previously known mutational and phenotypic spectrum associated with mutations in BMPR1B. Disturbances of NOG-GDF5-BMPR1B signaling cascade can result in similar clinical manifestations depending on the quantitative effect and mode of action of the specific mutations within the same functional pathway
Predicting death and readmission after intensive care discharge
Background: Despite initial recovery from critical illness, many patients deteriorate after discharge from the intensive care unit (ICU). We examined prospectively collected data in an attempt to identify patients at risk of readmission or death after intensive care discharge. Methods: This was a secondary analysis of clinical audit data from patients discharged alive from a mixed medical and surgical (non-cardiac) ICU. Results: Four hundred and seventy-five patients (11.2%) died in hospital after discharge from the ICU. Increasing age, time in hospital before intensive care admission, Acute Physiology and Chronic Health Evaluation II (APACHE II) score, and discharge Therapeutic Intervention Scoring System (TISS) score were independent risk factors for death after intensive care discharge. Three hundred and eighty-five patients (8.8%) were readmitted to intensive care during the same hospital admission. Increasing age, time in hospital before intensive care, APACHE II score, and discharge to a high dependency unit were independent risk factors for readmission. One hundred and forty-three patients (3.3%) were readmitted within 48 h of intensive care discharge. APACHE II scores and discharge to a high dependency or other ICU were independent risk factors for early readmission. The overall discriminant ability of our models was moderate with only marginal benefit over the APACHE II scores alone. Conclusions: We identified risk factors associated with death and readmission to intensive care. It was not possible to produce a definitive model based on these risk factors for predicting death or readmission in an individual patient.Not peer reviewedAuthor versio
SAPS 3âFrom evaluation of the patient to evaluation of the intensive care unit. Part 1: Objectives, methods and cohort description
OBJECTIVE: Risk adjustment systems now in use were developed more than a decade ago and lack prognostic performance. Objective of the SAPS 3 study was to collect data about risk factors and outcomes in a heterogeneous cohort of intensive care unit (ICU) patients, in order to develop a new, improved model for risk adjustment. DESIGN: Prospective multicentre, multinational cohort study. PATIENTS AND SETTING: A total of 19,577 patients consecutively admitted to 307 ICUs from 14 October to 15 December 2002. MEASUREMENTS AND RESULTS: Data were collected at ICU admission, on days 1, 2 and 3, and the last day of the ICU stay. Data included sociodemographics, chronic conditions, diagnostic information, physiological derangement at ICU admission, number and severity of organ dysfunctions, length of ICU and hospital stay, and vital status at ICU and hospital discharge. Data reliability was tested with use of kappa statistics and intraclass-correlation coefficients, which were >0.85 for the majority of variables. Completeness of the data was also satisfactory, with 1 [0â3] SAPS II parameter missing per patient. Prognostic performance of the SAPS II was poor, with significant differences between observed and expected mortality rates for the overall cohort and four (of seven) defined regions, and poor calibration for most tested subgroups. CONCLUSIONS: The SAPS 3 study was able to provide a high-quality multinational database, reflecting heterogeneity of current ICU case-mix and typology. The poor performance of SAPS II in this cohort underscores the need for development of a new risk adjustment system for critically ill patients. ELECTRONIC SUPPLEMENTARY MATERIAL: Electronic supplementary material is included in the online fulltext version of this article and accessible for authorised users: http://dx.doi.org/10.1007/s00134-005-2762-
A high-performance electrochemical biosensor using an engineered urate oxidase
We constructed a high-performance biosensor for detecting uric acid by immobilizing an engineered urate oxidase on gold nanoparticles deposited on a carbon-glass electrode. This biosensor showed a low limit-of-detection (9.16 nM), a high sensitivity (14 ÎŒA/ÎŒM), a wide range of linearity (50 nM-1 mM), and more than 28 days lifetime.</p
An Investigation into the Oil Transport and Starvation of Piston-Ring Pack
In order to accurately predict the lubricant film thickness and generated friction in any tribological contact, it is important to determine appropriate boundary conditions, taking into account the oil availability and extent of starvation. This paper presents a two-dimensional hydrodynamic model of a piston ring pack for prediction of lubricant film thickness, friction and total power loss. The model takes into account starvation caused by reverse flow at the conjunctional inlet wedge, and applied to a ring pack, comprising a compression and scraper ring. Inlet boundaries are calculated for an engine cycle of a four-cylinder, four-stroke gasoline engine operating at 1500âr/min with conditions pertaining to the New European Drive Cycle. The analysis shows the two main sources of starvation: first, due to a physical lack of inlet meniscus and second, due to reverse flow at the inlet wedge significantly affecting the prevailing conditions from the generally assumed idealised boundary conditions. Such an approach has not hitherto been reported in literature
- âŠ