16 research outputs found
Expression of interleukin-1 and interleukin-1 receptor antagonist by human rheumatoid synovial tissue macrophages
Interleukin-1 (IL-1) has protean effects in the pathogenesis of rheumatoid arthritis (RA). These effects include production of prostaglandins and collagenase from rheumatoid fibroblasts as well as upregulation of adhesion molecule expression on these cells. IL-1 can activate monocytes and neutrophils, as well as promote the growth of fibroblasts and endothelial cells. Recently, a novel interleukin-1 receptor antagonist protein (IRAP) has been isolated, purified, cloned, and expressed, which may modulate the effects of IL-1. In this study, we present data demonstrating that macrophages isolated from human RA synovial tissues express both IL-1 and IRAP genes. In addition, RA synovial tissue macrophages and lining cells display IL-1 and IRAP antigenic expression by immunohistochemistry. In contrast, osteoarthritis synovial tissues, as compared to RA, have fewer IL-1 and IRAP-positive macrophages. Thus, the production of IL-1 balanced by IRAP may affect the joint destruction found in these diseases.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/29796/1/0000142.pd
The proadhesive phenotype of systemic sclerosis skin promotes myeloid cell adhesion via ICAM-1 and VCAM-1
Objective. SSc is characterized by microvascular abnormalities and leucocyte infiltration. Previous studies have suggested a proadhesive phenotype in SSc skin, but the functional consequences of this phenotype are not fully understood. Molecules known to mediate leucocyte adhesion include those present at intracellular junctions, such as junctional adhesion molecule-B (JAM-B), JAM-C and CD99, as well as intercellular adhesion molecule-1 (ICAM-1) and vascular cell adhesion molecule-1 (VCAM-1). The aim of this study was to examine adhesive interactions in SSc skin. Methods. The expression of JAM-B, JAM-C, CD99, ICAM-1 and VCAM-1 in SSc skin was determined by immunohistology and cell surface ELISA. Myeloid U937 cell-SSc dermal fibroblast adhesion assays or in situ adhesion assays to SSc skin were performed. Results. JAM-C and CD99 expression on endothelial cells (ECs) in SSc skin was decreased compared with expression on normal ECs. CD99 was overexpressed on mononuclear cells in SSc skin and on SSc dermal fibroblasts. Neutralizing ICAM-1 inhibited the binding of U937 cells to SSc dermal fibroblasts. In addition, blocking both ICAM-1 and VCAM-1 inhibited U937 cell adhesion to either proximal (less involved) or distal (more involved) SSc skin. Conclusions. These studies show that JAM-C and CD99 are aberrantly expressed in SSc skin. However, these adhesion molecules do not mediate myeloid cell-SSc skin adhesion. In contrast, we demonstrate an important role for ICAM-1 and VCAM-1 in the retention of myeloid cells in SSc skin, suggesting that targeting these molecules may be useful SSc therapies
The proadhesive phenotype of systemic sclerosis skin promotes myeloid cell adhesion via ICAM-1 and VCAM-1
Objective. SSc is characterized by microvascular abnormalities and leucocyte infiltration. Previous studies have suggested a proadhesive phenotype in SSc skin, but the functional consequences of this phenotype are not fully understood. Molecules known to mediate leucocyte adhesion include those present at intracellular junctions, such as junctional adhesion molecule-B (JAM-B), JAM-C and CD99, as well as intercellular adhesion molecule-1 (ICAM-1) and vascular cell adhesion molecule-1 (VCAM-1). The aim of this study was to examine adhesive interactions in SSc skin. Methods. The expression of JAM-B, JAM-C, CD99, ICAM-1 and VCAM-1 in SSc skin was determined by immunohistology and cell surface ELISA. Myeloid U937 cell-SSc dermal fibroblast adhesion assays or in situ adhesion assays to SSc skin were performed. Results. JAM-C and CD99 expression on endothelial cells (ECs) in SSc skin was decreased compared with expression on normal ECs. CD99 was overexpressed on mononuclear cells in SSc skin and on SSc dermal fibroblasts. Neutralizing ICAM-1 inhibited the binding of U937 cells to SSc dermal fibroblasts. In addition, blocking both ICAM-1 and VCAM-1 inhibited U937 cell adhesion to either proximal (less involved) or distal (more involved) SSc skin. Conclusions. These studies show that JAM-C and CD99 are aberrantly expressed in SSc skin. However, these adhesion molecules do not mediate myeloid cell-SSc skin adhesion. In contrast, we demonstrate an important role for ICAM-1 and VCAM-1 in the retention of myeloid cells in SSc skin, suggesting that targeting these molecules may be useful SSc therapies
Synovial Inflammation in Patients with Osteonecrosis of the Femoral Head
Much of the work aimed at elucidating the pathogenesis of osteonecrosis (ON) of the femoral head has focused on bone blood supply, with little attention to the surrounding synovial tissue (ST). We hypothesized that patients with ON exhibit synovial inflammation. Using immunohistological techniques, we found that a large population of patients with ON had synovial inflammation. Moreover, a population of ON patients had inflamed ST without having an inflammatory disease co-morbidity. The inflammatory infiltrate in these patients comprised primarily CD4 + T cells and CD68 + macrophages, the latter of which expressed increased levels of cellular adhesion molecules. Our results suggest the presence of a previously unrecognized population of ON patients without a diagnosed inflammatory co-morbidity and a highly inflammed synovium consisting primarily of a macrophage and CD4 + T-cell infi ltrate.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/71872/1/j.1752-8062.2009.00133.x.pd