1,398 research outputs found

    NLO QCD corrections to ZZ+jet production at hadron colliders

    Get PDF
    A fully differential calculation of the next-to-leading order QCD corrections to the production of Z-boson pairs in association with a hard jet at the Tevatron and LHC is presented. This process is an important background for Higgs particle and new physics searches at hadron colliders. We find sizable corrections for cross sections and differential distributions, particularly at the LHC. Residual scale uncertainties are typically at the 10% level and can be further reduced by applying a veto against the emission of a second hard jet. Our results confirm that NLO corrections do not simply rescale LO predictions.Comment: 15 pages, 4 figures, 4 tables; added 1 reference, version to appear in Phys. Lett.

    Next-to-leading order multi-leg processes for the Large Hadron Collider

    Get PDF
    In this talk we discuss recent progress concerning precise predictions for the LHC. We give a status report of three applications of our method to deal with multi-leg one-loop amplitudes: The interference term of Higgs production by gluon- and weak boson fusion to order O(alpha^2 alpha_s^3) and the next-to-leading order corrections to the two processes pp -> ZZ jet and u ubar -> d dbar s sbar. The latter is a subprocess of the four jet cross section at the LHC.Comment: 6 pages, 5 figures. Talk given at the 8th international Symposium on Radiative Corrections (RADCOR), October 1-5 2007, Florence, Ital

    Top Background Extrapolation for H -> WW Searches at the LHC

    Get PDF
    A leading order (LO) analysis is presented that demonstrates that key top backgrounds to H -> W^+W^- -> l^\pm l^\mp \sla{p}_T decays in weak boson fusion (WBF) and gluon fusion (GF) at the CERN Large Hadron Collider can be extrapolated from experimental data with an accuracy of order 5% to 10%. If LO scale variation is accepted as proxy for the theoretical error, parton level results indicate that the tt~j background to the H -> WW search in WBF can be determined with a theoretical error of about 5%, while the tt~ background to the H -> WW search in GF can be determined with a theoretical error of better than 1%. Uncertainties in the parton distribution functions contribute an estimated 3% to 10% to the total error.Comment: 17 pages, 9 tables, 4 figures; LO caveat emphasized, version to be published in Phys. Rev.

    Towards pair production near threshold with unstable particle effective theory

    Full text link
    We illustrate the use of effective theory techniques to describe processes involving unstable particles close to resonance. First, we present the main ideas in the context of a scalar resonance in an Abelian gauge-Yukawa model. We then outline the necessary modifications to describe W-pair production close to threshold in electron-positron collisions.Comment: Invited talk given at the 11th International Conference on QCD, Montpellier, France (5--10th July 2004

    Magnetocardiography with a modular spin-exchange relaxation free atomic magnetometer array

    Full text link
    We present a portable four-channel atomic magnetometer array operating in the spin exchange relaxation-free regime. The magnetometer array has several design features intended to maximize its suitability for biomagnetic measurement, specifically foetal magnetocardiography, such as a compact modular design, and fibre coupled lasers. The modular design allows the independent positioning and orientation of each magnetometer, in principle allowing for non-planar array geometries. Using this array in a magnetically shielded room, we acquire adult magnetocadiograms. These measurements were taken with a 6-11 fT Hz^(-1/2) single-channel baseline sensitivity that is consistent with the independently measured noise level of the magnetically shielded room.Comment: 15 pages, 5 figure

    Optical Magnetometer Array for Fetal Magnetocardiography

    Full text link
    We describe an array of spin-exchange relaxation free optical magnetometers designed for detection of fetal magnetocardiography (fMCG) signals. The individual magnetometers are configured with a small volume with intense optical pumping, surrounded by a large pump-free region. Spin-polarized atoms that diffuse out of the optical pumping region precess in the ambient magnetic field and are detected by a probe laser. Four such magnetometers, at the corners of a 7 cm square, are configured for gradiometry by feeding back the output of one magnetometer to a field coil to null uniform magnetic field noise at frequencies up to 200 Hz. Using this array, we present the first measurements of fMCG signals using an atomic magnetometer

    Top Pair Production Beyond Double-Pole Approximation: pp, pp~ --> 6 Fermions and 0, 1 or 2 Additional Partons

    Get PDF
    Hadron collider cross sections for tt~ production and di-lepton, single-lepton and all-jet decays with up to 2 additional jets are calculated using complete LO matrix elements with 6-, 7- and 8-particle final states. The fixed-width, complex-mass and overall-factor schemes (FWS, CMS & OFS) are employed and the quality of narrow-width and double-pole approximations (NWA & DPA) is investigated for inclusive production and suppressed backgrounds to new particle searches. NWA and DPA cross sections differ by 1% or less. The inclusion of sub- and non-resonant amplitudes effects a cross section increase of 5-8% at pp supercolliders, but only minor changes at the Tevatron. On-shell tt~/Wtb backgrounds for the H --> WW decay in weak boson fusion, the hadronic \tau decay of a heavy H^\pm and the \phi --> hh --> \tau\tau bb~ radion decay at the LHC are updated, with corrections ranging from 3% to 30%. FWS and CMS cross sections are uniformly consistent, but OFS cross sections are up to 6% smaller for some backgrounds.Comment: 20 pages, 6 tables, 1 figur

    Inadequacy of zero-width approximation for a light Higgs boson signal

    Get PDF
    In the Higgs search at the LHC, a light Higgs boson (115 GeV <~ M_H <~ 130 GeV) is not excluded by experimental data. In this mass range, the width of the Standard Model Higgs boson is more than four orders of magnitude smaller than its mass. The zero-width approximation is hence expected to be an excellent approximation. We show that this is not always the case. The inclusion of off-shell contributions is essential to obtain an accurate Higgs signal normalisation at the 1% precision level. For gg (-> H) -> VV, V= W,Z, O(10%) corrections occur due to an enhanced Higgs signal in the region M_VV > 2 M_V, where also sizable Higgs-continuum interference occurs. We discuss how experimental selection cuts can be used to exclude this region in search channels where the Higgs invariant mass cannot be reconstructed. We note that the H -> VV decay modes in weak boson fusion are similarly affected.Comment: 26 pages, 18 figures, 6 tables; added references, expanded introduction, version to appear in JHE

    Finite-Width Effects in Top Quark Production at Hadron Colliders

    Get PDF
    Production cross sections for t\bar{t} and t\bar{t}j events at hadron colliders are calculated, including finite width effects and off resonance contributions for the entire decay chain, t --> bW --> b\ell\nu, for both top quarks. Resulting background rates to Higgs search at the CERN LHC are updated for inclusive H --> WW studies and for H --> \tau\tau and H --> WW decays in weak boson fusion events. Finite width effects are large, increasing t\bar{t}(j) rates by 20% or more, after typical cuts which are employed for top-background rejection.Comment: 32 pages, 11 figures, 7 tables; minor changes, reference added, to be published in Phys. Rev.
    • …
    corecore