226 research outputs found

    Closing a gap in tropical forest biomass estimation : taking crown mass variation into account in pantropical allometries

    Get PDF
    Accurately monitoring tropical forest carbon stocks is a challenge that remains outstanding. Allometric models that consider tree diameter, height and wood density as predictors are currently used in most tropical forest carbon studies. In particular, a pantropical biomass model has been widely used for approximately a decade, and its most recent version will certainly constitute a reference model in the coming years. However, this reference model shows a systematic bias towards the largest trees. Because large trees are key drivers of forest carbon stocks and dynamics, understanding the origin and the consequences of this bias is of utmost concern. In this study, we compiled a unique tree mass data set of 673 trees destructively sampled in five tropical countries (101 trees > 100 cm in diameter) and an original data set of 130 forest plots (1 ha) from central Africa to quantify the prediction error of biomass allometric models at the individual and plot levels when explicitly taking crown mass variations into account or not doing so. We first showed that the proportion of crown to total tree aboveground biomass is highly variable among trees, ranging from 3 to 88 %. This proportion was constant on average for trees = 45 Mg. This increase coincided with a progressive deviation between the pantropical biomass model estimations and actual tree mass. Taking a crown mass proxy into account in a newly developed model consistently removed the bias observed for large trees (> 1 Mg) and reduced the range of plot- level error (in %) from [-23; 16] to [0; 10]. The disproportionally higher allocation of large trees to crown mass may thus explain the bias observed recently in the reference pantropical model. This bias leads to far- from- negligible, but often overlooked, systematic errors at the plot level and may be easily corrected by taking a crown mass proxy for the largest trees in a stand into account, thus suggesting that the accuracy of forest carbon estimates can be significantly improved at a minimal cost

    Fine-scale mapping of Schistosoma mansoni infections and infection intensities in sub-districts of Makenene in the Centre region of Cameroon

    Get PDF
    BackgroundSchistosomiasis control relies mainly on mass drug administration of Praziquantel (PZQ) to school aged children (SAC). Although precision mapping has recently guided decision making, the sub-districts and the epidemiological differences existing between bio-ecological settings in which infected children come from were not taken into consideration. This study was designed to fill this gap by using POC-CCA and KK to comparatively determine the prevalence and infection intensities of Schistosoma mansoni (S. mansoni) and to perform fine-scale mapping of S. mansoni infections and its infection intensities with the overarching goal of identifying sub-districts presenting high transmission risk where control operations must be boosted to achieve schistosomiasis elimination.MethodologyDuring a cross- sectional study conducted in Makenene, 1773 stool and 2253 urine samples were collected from SAC of ten primary schools. S. mansoni infections were identified using the point of care circulating cathodic antigen (POC-CCA) and Kato-Katz (KK) test respectively on urine and stool samples. Geographical coordinates of houses of infected SAC were recorded using a global position system device. Schistosome infections and infection intensities were map using QGIS software.ResultsThe prevalence of S. mansoni inferred from POC-CCA and KK were 51.3% and 7.3% respectively. Most infected SAC and those bearing heavy infections intensities were clustered in sub-districts of Baloua, Mock-sud and Carriere. Houses with heavily-infected SAC were close to risky biotopes.ConclusionThis study confirms the low sensitivity of KK test compared to POC-CCA to accurately identify children with schistosome infection and bearing different schistosome burden. Fine-scale mapping of schistosome infections and infection intensities enabled to identify high transmission sub-districts where control measures must be boosted to reach schistosomiasis elimination.Host-parasite interactio

    Ethnoknowledge of medicinal and mystical plants used by healers in Juazeiro do Norte, Ceará, Northeast Brazil

    Get PDF
    154-166The aim of this study was to investigate the use of medicinal plants by healers in Juazeiro do Norte, Northeast Brazil, as well as to understand their role in prayer/healing practices. 30 residents from 20 neighborhoods, 18 urban neighborhoods and 2 randomly selected rural locations, were interviewed using a sample method known as "snowball", with two pilot interviews being initially conducted, where for greater method reliability and for the analysis of the importance attributed to the plants by the respondents, a calculation to determine their Relative Importance (RI) index was used. The results indicate the use of 60 species distributed across 34 families. The most representative families were: Fabaceae (7), Lamiaceae (6) and Asteraceae (5), where 10 species (eight exotic and two native) obtained a Relative Importance (RI>1): Ruta graveolens L. (1.47), Vernonia condensata Baker (1.47), Piper aduncun L. (1.44), Mentha spicata L. (1.33), Myracrodruon urundeuva Allemão (1.3), Psidium guajava L. (1.19), Hymenaea stignocarpa Mart. ex. Hayne (1.15), Lippia alba (Mil.) (1.11), Leonotis nepetaefolia (L.) R. Br. (1.08) and Cymbopogon citratus (D.C.) Stapf (1.01). The aforementioned species are acquired from backyards (50%), open markets (33.3%) or from surrounding scrubs (16.6%). Indications included usage for 11 body systems, with 36 species (60%) being indicated for the treatment of the digestive system and 15 (25%) for the treatment of diseases of the female reproductive system. Nine species (15%) were indicated for ritualistic purposes (prayer/healing). With this, the importance of the Healer figure in several municipal districts was observed, a tradition that remains alive, despite the need for greater transmission and assimilation to upcoming generations

    Targeting Antibody Responses to the Membrane Proximal External Region of the Envelope Glycoprotein of Human Immunodeficiency Virus

    Get PDF
    Although human immunodeficiency type 1 (HIV-1) infection induces strong antibody responses to the viral envelope glycoprotein (Env) only a few of these antibodies possess the capacity to neutralize a broad range of strains. The induction of such antibodies represents an important goal in the development of a preventive vaccine against the infection. Among the broadly neutralizing monoclonal antibodies discovered so far, three (2F5, Z13 and 4E10) target the short and hidden membrane proximal external region (MPER) of the gp41 transmembrane protein. Antibody responses to MPER are rarely observed in HIV-infected individuals or after immunization with Env immunogens. To initiate antibody responses to MPER in its membrane-embedded native conformation, we generated expression plasmids encoding the membrane-anchored ectodomain of gp41 with N-terminal deletions of various sizes. Following transfection of these plasmids, the MPER domains are displayed on the cell surface and incorporated into HIV virus like particles (VLP). Transfected cells displaying MPER mutants bound as efficiently to both 2F5 and 4E10 as cells transfected with a plasmid encoding full-length Env. Mice immunized with VLPs containing the MPER mutants produced MPER-specific antibodies, the levels of which could be increased by the trimerization of the displayed proteins as well as by a DNA prime-VLP boost immunization strategy. Although 2F5 competed for binding to MPER with antibodies in sera of some of the immunized mice, neutralizing activity could not be detected. Whether this is due to inefficient binding of the induced antibodies to MPER in the context of wild type Env or whether the overall MPER-specific antibody response induced by the MPER display mutants is too low to reveal neutralizing activity, remains to be determined

    Roadless wilderness area determines forest elephant movements in the Congo Basin

    Get PDF
    A dramatic expansion of road building is underway in the Congo Basin fuelled by private enterprise, international aid, and government aspirations. Among the great wilderness areas on earth, the Congo Basin is outstanding for its high biodiversity, particularly mobile megafauna including forest elephants (Loxodonta africana cyclotis). The abundance of many mammal species in the Basin increases with distance from roads due to hunting pressure, but the impacts of road proliferation on the movements of individuals are unknown. We investigated the ranging behaviour of forest elephants in relation to roads and roadless wilderness by fitting GPS telemetry collars onto a sample of 28 forest elephants living in six priority conservation areas. We show that the size of roadless wilderness is a strong determinant of home range size in this species. Though our study sites included the largest wilderness areas in central African forests, none of 4 home range metrics we calculated, including core area, tended toward an asymptote with increasing wilderness size, suggesting that uninhibited ranging in forest elephants no longer exists. Furthermore we show that roads outside protected areas which are not protected from hunting are a formidable barrier to movement while roads inside protected areas are not. Only 1 elephant from our sample crossed an unprotected road. During crossings her mean speed increased 14-fold compared to normal movements. Forest elephants are increasingly confined and constrained by roads across the Congo Basin which is reducing effective habitat availability and isolating populations, significantly threatening long term conservation efforts. If the current road development trajectory continues, forest wildernesses and the forest elephants they contain will collapse

    Spatially Explicit Analyses of Anopheline Mosquitoes Indoor Resting Density: Implications for Malaria Control

    Get PDF
    Background: The question of sampling and spatial aggregation of malaria vectors is central to vector control efforts and estimates of transmission. Spatial patterns of anopheline populations are complex because mosquitoes' habitats and behaviors are strongly heterogeneous. Analyses of spatially referenced counts provide a powerful approach to delineate complex distribution patterns, and contributions of these methods in the study and control of malaria vectors must be carefully evaluated. Methodology/Principal Findings: We used correlograms, directional variograms, Local Indicators of Spatial Association (LISA) and the Spatial Analysis by Distance IndicEs (SADIE) to examine spatial patterns of Indoor Resting Densities (IRD) in two dominant malaria vectors sampled with a 565 km grid over a 2500 km(2) area in the forest domain of Cameroon. SADIE analyses revealed that the distribution of Anopheles gambiae was different from regular or random, whereas there was no evidence of spatial pattern in Anopheles funestus (Ia = 1.644, Pa0.05, respectively). Correlograms and variograms showed significant spatial autocorrelations at small distance lags, and indicated the presence of large clusters of similar values of abundance in An. gambiae while An. funestus was characterized by smaller clusters. The examination of spatial patterns at a finer spatial scale with SADIE and LISA identified several patches of higher than average IRD (hot spots) and clusters of lower than average IRD (cold spots) for the two species. Significant changes occurred in the overall spatial pattern, spatial trends and clusters when IRDs were aggregated at the house level rather than the locality level. All spatial analyses unveiled scale-dependent patterns that could not be identified by traditional aggregation indices. Conclusions/Significance: Our study illustrates the importance of spatial analyses in unraveling the complex spatial patterns of malaria vectors, and highlights the potential contributions of these methods in malaria control

    Altered ureteric branching morphogenesis and nephron endowment in offspring of diabetic and insulin-treated pregnancy

    Get PDF
    <div><p>There is strong evidence from human and animal models that exposure to maternal hyperglycemia during <i>in utero</i> development can detrimentally affect fetal kidney development. Notwithstanding this knowledge, the precise effects of diabetic pregnancy on the key processes of kidney development are unclear due to a paucity of studies and limitations in previously used methodologies. The purpose of the present study was to elucidate the effects of hyperglycemia on ureteric branching morphogenesis and nephrogenesis using unbiased techniques. Diabetes was induced in pregnant C57Bl/6J mice using multiple doses of streptozotocin (STZ) on embryonic days (E) 6.5-8.5. Branching morphogenesis was quantified <i>ex vivo</i> using Optical Projection Tomography, and nephrons were counted using unbiased stereology. Maternal hyperglycemia was recognised from E12.5. At E14.5, offspring of diabetic mice demonstrated fetal growth restriction and a marked deficit in ureteric tip number (control 283.7±23.3 vs. STZ 153.2±24.6, mean±SEM, <i>p</i>&lt;0.01) and ureteric tree length (control 33.1±2.6 mm vs. STZ 17.6±2.7 mm, <i>p</i> = 0.001) vs. controls. At E18.5, fetal growth restriction was still present in offspring of STZ dams and a deficit in nephron endowment was observed (control 1246.2±64.9 vs. STZ 822.4±74.0, <i>p&lt;</i>0.001). Kidney malformations in the form of duplex ureter and hydroureter were a common observation (26%) in embryos of diabetic pregnancy compared with controls (0%). Maternal insulin treatment from E13.5 normalised maternal glycaemia but did not normalise fetal weight nor prevent the nephron deficit. The detrimental effect of hyperglycemia on ureteric branching morphogenesis and, in turn, nephron endowment in the growth-restricted fetus highlights the importance of glycemic control in early gestation and during the initial stages of renal development.</p> </div

    Restriction associated DNA-genotyping at multiple spatial scales in Arabidopsis lyrata reveals signatures of pathogen-mediated selection

    Get PDF
    Background: Genome scans based on outlier analyses have revolutionized detection of genes involved in adaptive processes, but reports of some forms of selection, such as balancing selection, are still limited. It is unclear whether high throughput genotyping approaches for identification of single nucleotide polymorphisms have sufficient power to detect modes of selection expected to result in reduced genetic differentiation among populations. In this study, we used Arabidopsis lyrata to investigate whether signatures of balancing selection can be detected based on genomic smoothing of Restriction Associated DNA sequencing (RAD-seq) data. We compared how different sampling approaches (both within and between subspecies) and different background levels of polymorphism (inbreeding or outcrossing populations) affected the ability to detect genomic regions showing key signatures of balancing selection, specifically elevated polymorphism, reduced differentiation and shifts towards intermediate allele frequencies. We then tested whether candidate genes associated with disease resistance (R-gene analogs) were detected more frequently in these regions compared to other regions of the genome. Results: We found that genomic regions showing elevated polymorphism contained a significantly higher density of R-gene analogs predicted to be under pathogen-mediated selection than regions of non-elevated polymorphism, and that many of these also showed evidence for an intermediate site-frequency spectrum based on Tajima’s D. However, we found few genomic regions that showed both elevated polymorphism and reduced FST among populations, despite strong background levels of genetic differentiation among populations. This suggests either insufficient power to detect the reduced population structure predicted for genes under balancing selection using sparsely distributed RAD markers, or that other forms of diversifying selection are more common for the R-gene analogs tested. Conclusions: Genome scans based on a small number of individuals sampled from a wide range of populations were sufficient to confirm the relative scarcity of signatures of balancing selection across the genome, but also identified new potential disease resistance candidates within genomic regions showing signatures of balancing selection that would be strong candidates for further sequencing efforts
    corecore