24 research outputs found
Structure of poly(propyl ether imine) (PETIM) dendrimer from fully atomistic molecular Dynamics Simulation and by Small Angle X-ray scattering
We study the structure of carboxylic acid terminated neutral poly (propyl
ether imine) (PETIM) dendrimer from generation 1 through 6 (G1-G6) in a good
solvent (water) by fully atomistic molecular dynamics (MD) simulations. We
determine as a function of generation such structural properties as: radius of
gyration, shape tensor, asphericity, fractal dimension, monomer density
distribution, and end-group distribution functions. The sizes obtained from the
MD simulations have been validated by Small Angle X-Ray Scattering (SAXS)
experiment on dendrimer of generation 2 to 4 (G2-G4). A good agreement between
the experimental and theoretical value of radius of gyration has been observed.
We find a linear increase in radius of gyration with the generation. In
contrast, Rg scales as ~ N^x with the number of monomers. We find two distinct
exponents depending on the generations: x = 0.47 for G1-G3 and x = 0.28 for
G3-G6 which reveals their non-space filling nature. In comparison with the
amine terminated PAMAM dendrimer, we find Rg of G-th generation PETIM dendrimer
is nearly equal to that of (G+1)-th generation of PAMAM dendrimer as observed
by Maiti et. al. [Macromolecules,38, 979 2005]. We find substantial back
folding of the outer sub generations into the interior of the dendrimer. Due to
their highly flexible nature of the repeating branch units, the shape of the
PETIM dendrimer deviates significantly from the spherical shape and the
molecules become more and more spherical as the generation increases. The
interior of the dendrimer is quite open with internal cavities available for
accommodating guest molecules suggesting using PETIM dendrimer for guest-host
applications. We also give a quantitative measure of the number of water
molecules present inside the dendrimer.Comment: 33 page
Inherent photoluminescence properties of poly(propyl ether imine) dendrimers
Hydroxyl group terminated poly(propyl ether imine) dendrimers of 1 to 5 generations absorb in the region of 260-340 nm, in MeOH and aqueous solutions. Excitation of a solution of the dendrimers at 330 nm led to an emission at ∼ 390 nm. The emission intensities increased under acidic pH and in more viscous solvents. The presence of air did not affect the emission profiles, as also aging of a dendrimer solution for prolonged periods. Lifetime measurements show at least two species responsible for the emission. Anions perchlorate, periodate, nitrite, and pyridinium methyliodide quenched the fluorescence efficiently, among several anions tested
Preparation and catalytic studies of palladium nanoparticles stabilized by dendritic phosphine ligand-functionalized silica
Silica is a prominently utilized heterogeneous metal catalyst support. Functionalization of the silica with poly(ether imine) based dendritic phosphine ligand was conducted, in order to assess the efficacy of the dendritic phosphine in reactions facilitated by a silica supported metal catalyst. The phosphinated poly(ether imine) (PETIM) dendritic ligand was bound covalently to the functionalized silica. For this purpose, the phosphinated dendritic ligand containing an amine at the focal point was synthesized initially. Complexation of the dendritic phosphine functionalized silica with Pd(COD)Cl-2 yielded Pd(II) complex, which was reduced subsequently to Pd(0), by conditioning with EtOH. The Pd metal nanoparticle thus formed was characterized by physical methods, and the spherical nanoparticles were found to have >85% size distribution between 2 nm and 4 nm. The metal nanoparticle was tested as a hydrogenation catalyst of olefins. The catalyst could be recovered and recycled more than 10 times, without a loss in the catalytic efficiency
Preparation and catalytic studies of palladium nanoparticles stabilized by dendritic phosphine ligand-functionalized silica
Silica is a prominently utilized heterogeneous metal catalyst support. Functionalization of the silica with poly(ether imine) based dendritic phosphine ligand was conducted, in order to assess the efficacy of the dendritic phosphine in reactions facilitated by a silica supported metal catalyst. The phosphinated poly(ether imine) (PETIM) dendritic ligand was bound covalently to the functionalized silica. For this purpose, the phosphinated dendritic ligand containing an amine at the focal point was synthesized initially. Complexation of the dendritic phosphine functionalized silica with Pd(COD)Cl<SUB>2</SUB> yielded Pd(II) complex, which was reduced subsequently to Pd(0), by conditioning with EtOH. The Pd metal nanoparticle thus formed was characterized by physical methods, and the spherical nanoparticles were found to have > 85% size distribution between 2 nm and 4 nm. The metal nanoparticle was tested as a hydrogenation catalyst of olefins. The catalyst could be recovered and recycled more than 10 times, without a loss in the catalytic efficiency
Interaction of single-walled carbon nanotubes with poly(propyl ether imine) dendrimers
We study the complexation of nontoxic, native poly(propyl ether imine) dendrimers with single-walled carbon nanotubes (SWNTs). The interaction was monitored by measuring the quenching of inherent fluorescence of the dendrimer. The dendrimer-nanotube binding also resulted in the increased electrical resistance of the hole doped SWNT, due to charge-transfer interaction between dendrimer and nanotube. This charge-transfer interaction was further corroborated by observing a shift in frequency of the tangential Raman modes of SWNT. We also report the effect of acidic and neutral pH conditions on the binding affinities. Experimental studies were supplemented by all atom molecular dynamics simulations to provide a microscopic picture of the dendrimer-nanotube complex. The complexation was achieved through charge transfer and hydrophobic interactions, aided by multitude of oxygen, nitrogen, and n-propyl moieties of the dendrimer. (C) 2011 American Institute of Physics. doi:10.1063/1.3561308