18,268 research outputs found
Collocating Interface Objects: Zooming into Maps
May, Dean and Barnard [10] used a theoretically based model to argue that objects in a wide range of interfaces should be collocated following screen changes such as a zoom-in to detail. Many existing online maps do not follow this principle, but move a clicked point to the centre of the subsequent display, leaving the user looking at an unrelated location. This paper presents three experiments showing that collocating the point clicked on a map so that the detailed location appears in the place previously occupied by the overview location makes the map easier to use, reducing eye movements and interaction duration. We discuss the benefit of basing design principles on theoretical models so that they can be applied to novel situations, and so designers can infer when to use and not use them
Geometry and mechanics of microdomains in growing bacterial colonies
Bacterial colonies are abundant on living and nonliving surfaces and are
known to mediate a broad range of processes in ecology, medicine, and industry.
Although extensively researched, from single cells to demographic scales, a
comprehensive biomechanical picture, highlighting the cell-to-colony dynamics,
is still lacking. Here, using molecular dynamics simulations and continuous
modeling, we investigate the geometrical and mechanical properties of a
bacterial colony growing on a substrate with a free boundary and demonstrate
that such an expanding colony self-organizes into a "mosaic" of microdomains
consisting of highly aligned cells. The emergence of microdomains is mediated
by two competing forces: the steric forces between neighboring cells, which
favor cell alignment, and the extensile stresses due to cell growth that tend
to reduce the local orientational order and thereby distort the system. This
interplay results in an exponential distribution of the domain areas and sets a
characteristic length scale proportional to the square root of the ratio
between the system orientational stiffness and the magnitude of the extensile
active stress. Our theoretical predictions are finally compared with
experiments with freely growing E. coli microcolonies, finding quantitative
agreement.Comment: 10 pages, 7 figure
Active Thrusting and Folding Along the Northern Tien Shan and Late Cenozoic Rotation of the Tarim Relative to Dzungaria and Kazakhstan
We have studied geometries and rates of late Cenozoic thrust faulting and folding along the northern piedmont of the Tien Shan mountain belt, West of Urumqi, where the M= 8.3 Manas earthquake occurred on December 23, 1906. The northern range of the Tien Shan, rising above 5000 m, overthrusts a flexural foredeep, filled with up to 11,000 m of sediment, of the Dzungarian basement. Our fieldwork reveals that the active thrust reaches the surface 30 km north of the range front, within a 200-km-long zone of Neogene-Quaternary anticlines. Fault scarps are clearest across inset terraces within narrow valleys incised through the anticlines by large rivers flowing down from the range. In all the valleys, the scarps offset vertically the highest terrace surface by the same amount (10.2±0.7 m). Inferring an early Holocene age (10±2 kyr) for this terrace, which is continuous with the largest recent fans of the piedmont, yields a rate of vertical throw of 1.0±0.3mm/yr on the main active thrust at the surface. A quantitative morphological analysis of the degradation of terrace edges that are offset by the thrust corroborates such a rate and yields a mass diffusivity of 5.5±2.5 m^2/kyr. A rather fresh surface scarp, 0.8±0.15 m high, that is unlikely to result from shallow earthquakes with 6 < M < 7 in the last 230 years, is visible at the extremities of the main fold zone. We associate this scarp with the 1906 Manas earthquake and infer that a structure comprising a deep basement ramp under the range, gently dipping flats in the foreland, and shallow ramps responsible for the formation of the active, fault propagation anticlines could have been activated by that earthquake. If so, the return period of a 1906 type event would be 850 ±380 years. The small size of the scarp for an earthquake of this magnitude suggests that a large fraction of the slip at depth (≈2/3) is taken up by incremental folding near the surface. Comparable earthquakes might activate flat detachments and ramp anticlines at a distance from the front of other rising Quaternary ranges such as the San Gabriel mountains in California or the Mont Blanc-Aar massifs in the Alps. We estimate the finite Cenozoic shortening of the folded Dzungarian sediments to be of the order of 30 km and the Cenozoic shortening rate to have been 3 ± 1.5 mm/yr. Assuming comparable shortening along the Tarim piedmont and minor additional active thrusting within the mountain belt, we infer the rate of shortening across the Tien Shan to be at least 6 ± 3 mm/yr at the longitude of Manas (≈85.5°E). A total shortening of 125±30 km is estimated from crustal thickening, assuming local Airy isostatic equilibrium. Under the same assumption, serial N-S sections imply that Cenozoic shortening across the belt increases westwards to 203±50 km at the longitude of Kashgar (≈ 76 °E), as reflected by the westward increase of the width of the belt. This strain gradient implies a clockwise rotation of Tarim relative to Dzungaria and Kazakhstan of 7±2.5° around a pole located near the eastern extremity of the Tien Shan, west of Hami (≈96°E, 43.5°N), comparable to that revealed by paleomagnetism between Tarim and Dzungaria (8.6° ± 8.7°). A 6 mm/yr rate of shortening at the longitude of Manas would imply a rate of rotation of 0.45°/m.y. and would be consistent with a shortening rate of 12 mm/yr north of Kashgar. Taking such values to be representative of Late Cenozoic rates would place the onset of reactivation of the Tien Shan by the India-Asia collision in the early to middle Miocene (16 +22/−9 m.y.), in accord with the existence of particularly thick late Neogene and Quaternary deposits. Such reactivation would thus have started much later than the collision, roughly at the time of the great mid-Miocene changes in tectonic regimes, denudation and sedimentation rates observed in southeast Asia, the Himalayas and the Bay of Bengal, and of the correlative rapid change in seawater Sr isotopic ratio (20 to 15 Ma). Like these other changes, the rise of the Tien Shan might be a distant consequence of the end of Indochina's escape
A qubit strongly-coupled to a resonant cavity: asymmetry of the spontaneous emission spectrum beyond the rotating wave approximation
We investigate the spontaneous emission spectrum of a qubit in a lossy
resonant cavity. We use neither the rotating-wave approximation nor the Markov
approximation. The qubit-cavity coupling strength is varied from weak, to
strong, even to lower bound of the ultra-strong. For the weak-coupling case,
the spontaneous emission spectrum of the qubit is a single peak, with its
location depending on the spectral density of the qubit environment. Increasing
the qubit-cavity coupling increases the asymmetry (the positions about the
qubit energy spacing and heights of the two peaks) of the two spontaneous
emission peaks (which are related to the vacuum Rabi splitting) more.
Explicitly, for a qubit in a low-frequency intrinsic bath, the height asymmetry
of the splitting peaks becomes larger, when the qubit-cavity coupling strength
is increased. However, for a qubit in an Ohmic bath, the height asymmetry of
the spectral peaks is inverted from the same case of the low-frequency bath,
when the qubit is strongly coupled to the cavity. Increasing the qubit-cavity
coupling to the lower bound of the ultra-strong regime, the height asymmetry of
the left and right peak heights are inverted, which is consistent with the same
case of low-frequency bath, only relatively weak. Therefore, our results
explicitly show how the height asymmetry in the spontaneous emission spectrum
peaks depends not only on the qubit-cavity coupling, but also on the type of
intrinsic noise experienced by the qubit.Comment: 10pages, 5 figure
The information about the state of a charge qubit gained by a weakly coupled quantum point contact
We analyze the information that one can learn about the state of a quantum
two-level system, i.e. a qubit, when probed weakly by a nearby detector. We
consider the general case where the qubit Hamiltonian and the qubit's operator
probed by the detector do not commute. Because the qubit's state keeps evolving
while being probed and the measurement data is mixed with a detector-related
background noise, one might expect the detector to fail in this case. We show,
however, that under suitable conditions and by proper analysis of the
measurement data useful information about the initial state of the qubit can be
extracted. Our approach complements the usual master-equation and
quantum-trajectory approaches, which describe the evolution of the qubit's
quantum state during the measurement process but do not keep track of the
acquired measurement information.Comment: 5 pages, 3 figures; Published in the proceedings of the Nobel
Symposium 141: Qubits for Future Quantum Informatio
Weak and strong measurement of a qubit using a switching-based detector
We analyze the operation of a switching-based detector that probes a qubit's
observable that does not commute with the qubit's Hamiltonian, leading to a
nontrivial interplay between the measurement and free-qubit dynamics. In order
to obtain analytic results and develop intuitive understanding of the different
possible regimes of operation, we use a theoretical model where the detector is
a quantum two-level system that is constantly monitored by a macroscopic
system. We analyze how to interpret the outcome of the measurement and how the
state of the qubit evolves while it is being measured. We find that the answers
to the above questions depend on the relation between the different parameters
in the problem. In addition to the traditional strong-measurement regime, we
identify a number of regimes associated with weak qubit-detector coupling. An
incoherent detector whose switching time is measurable with high accuracy can
provide high-fidelity information, but the measurement basis is determined only
upon switching of the detector. An incoherent detector whose switching time can
be known only with low accuracy provides a measurement in the qubit's energy
eigenbasis with reduced measurement fidelity. A coherent detector measures the
qubit in its energy eigenbasis and, under certain conditions, can provide
high-fidelity information.Comment: 20 pages (two-column), 6 figure
The effects of surface finish and grain size on the strength of sintered silicon carbide
The effects of surface treatment and microstructure, especially abnormal grain growth, on the strength of sintered SiC were studied. The surfaces of sintered SiC were treated with 400, 800 and 1200 grit diamond wheels. Grain growth was induced by increasing the sintering times at 2050 C. The beta to alpha transformation occurred during the sintering of beta-phase starting materials and was often accompanied by abnormal grain growth. The overall strength distributions were established using Weibull statistics. The strength of the sintered SiC is limited by extrinsic surface flaws in normal-sintered specimens. The finer the surface finish and grain size, the higher the strength. But the strength of abnormal sintering specimens is limited by the abnormally grown large tabular grains. The Weibull modulus increases with decreasing grain size and decreasing grit size for grinding
- …