5,149 research outputs found
Control means for a gas turbine engine
A means is provided for developing a signal representative of the actual compressor casing temperature, a second signal representative of compressor inlet gas temperature, and a third signal representative of compressor speed. Another means is provided for receiving the gas temperature and compressor speed signals and developing a schedule output signal which is a representative of a reference casing temperature at which a predetermined compressor blade stabilized clearance is provided. A means is also provided for comparing the actual compressor casing temperature signal and the reference casing temperature signal and developing a clearance control system representative of the difference. The clearance control signal is coupled to a control valve which controls a flow of air to the compressor casing to control the clearance between the compressor blades and the compressor casing. The clearance control signal can be modified to accommodate transient characteristics. Other embodiments are disclosed
Propulsion system mathematical model for a lift/cruise fan V/STOL aircraft
A propulsion system mathematical model is documented that allows calculation of internal engine parameters during transient operation. A non-realtime digital computer simulation of the model is presented. It is used to investigate thrust response and modulation requirements as well as the impact of duty cycle on engine life and design criteria. Comparison of simulation results with steady-state cycle deck calculations showed good agreement. The model was developed for a specific 3-fan subsonic V/STOL aircraft application, but it can be adapted for use with any similar lift/cruise V/STOL configuration
Global Modeling, Field Campaigns, Upscaling and Ray Desjardins
In the early 1980's, it became apparent that land surface radiation and energy budgets were unrealistically represented in Global Circulation models (GCM's), Shortly thereafter, it became clear that the land carbon budget was also poorly represented in Earth System Models (ESM's), A number of scientific communities, including GCM/ESM modelers, micrometeorologists, satellite data specialists and plant physiologists, came together to design field experiments that could be used to develop and validate the contemporary prototype land surface models. These experiments were designed to measure land surface fluxes of radiation, heat, water vapor and CO2 using a network of flux towers and other plot-scale techniques, coincident with satellite measurements of related state variables, The interdisciplinary teams involved in these experiments quickly became aware of the scale gap between plot-scale measurements (approx 10 - 100m), satellite measurements (100m - 10 km), and GCM grid areas (l0 - 200km). At the time, there was no established flux measurement capability to bridge these scale gaps. Then, a Canadian science learn led by Ray Desjardins started to actively participate in the design and execution of the experiments, with airborne eddy correlation providing the radically innovative bridge across the scale gaps, In a succession of brilliantly executed field campaigns followed up by convincing scientific analyses, they demonstrated that airborne eddy correlation allied with satellite data was the most powerful upscaling tool available to the community, The rest is history: the realism and credibility of weather and climate models has been enormously improved enormously over the last 25 years with immense benefits to the public and policymakers
Improved Approximate String Matching and Regular Expression Matching on Ziv-Lempel Compressed Texts
We study the approximate string matching and regular expression matching
problem for the case when the text to be searched is compressed with the
Ziv-Lempel adaptive dictionary compression schemes. We present a time-space
trade-off that leads to algorithms improving the previously known complexities
for both problems. In particular, we significantly improve the space bounds,
which in practical applications are likely to be a bottleneck
Partial recovery of voiding function in female mice following repeated psychological stress exposure
Psychological stress causes bladder dysfunction in humans and in rodent models, with increased urinary frequency and altered contractile responses evident following repeated environmental stress exposure. However, whether these changes persist after removal of the stressor is unknown, and the aim of this study was to determine if stress-induced changes in voiding behaviour and bladder function recover following removal of the stressor. Adult female mice were allocated to three groups: Unstressed, Stressed or Stressed + Recovery. Animals in the stressed groups were exposed to water avoidance stress for 1h/day for 10-days, with unstressed animals age-matched and housed under normal conditions. For recovery studies, animals were housed without stress exposure for an additional 10-days. Voiding behaviour was assessed periodically and animals sacrificed on day 10 (Unstressed and Stressed) or day 20 (Unstressed and Stressed + Recovery). Isolated whole bladder studies were used to assess compliance, urothelial mediator release and contractile responses. Exposure to stress increased plasma corticosterone levels almost three-fold (P<0.05) but this returned to baseline during the recovery period. Contractile responses of the bladder to carbachol and KCl were also increased following stress, and again fully recovered after a 10-day stress-free period. In contrast, stress increased urinary frequency four-fold (P<0.001), but this did not return fully to baseline during the recovery period. Bladder compliance was unchanged by stress; however, it was increased in the stressed + recovery group (P<0.05). Thus, following a stress-free period there is partial recovery of voiding behaviour, with an increase in bladder compliance possibly contributing to the compensatory mechanisms
Use of mob grazing to improve cattle production, enhance legume establishment and increase carbon sequestration in Iowa pastures
Mob grazing is a variation on rotational grazing that has been proposed to have promise as one of the tactics graziers can use to improve cattle performance and environmental quality. This project looked at whether and how mob grazing could benefit livestock and producer management of their pastures and soil resources
Enhancing botanical composition, wildlife habitat and carbon sequestration of pastures in south central Iowa through soil disturbance by mob grazing of beef cattle
As Iowa pastures continue to be dominated by cool-season grass species, strategic integration of a single mob-grazing event into pasture management offers a tool to simultaneously increase productivity of pastures and to improve grassland wildlife habitat through increased biodiversity. However, the success of the maneuver depends on climate, soil and landscape
Remote Sensing of Tropical Ecosystems: Atmospheric Correction and Cloud Masking Matter
Tropical rainforests are significant contributors to the global cycles of energy, water and carbon. As a result, monitoring of the vegetation status over regions such as Amazonia has been a long standing interest of Earth scientists trying to determine the effect of climate change and anthropogenic disturbance on the tropical ecosystems and its feedback on the Earth's climate. Satellite-based remote sensing is the only practical approach for observing the vegetation dynamics of regions like the Amazon over useful spatial and temporal scales, but recent years have seen much controversy over satellite-derived vegetation states in Amaznia, with studies predicting opposite feedbacks depending on data processing technique and interpretation. Recent results suggest that some of this uncertainty could stem from a lack of quality in atmospheric correction and cloud screening. In this paper, we assess these uncertainties by comparing the current standard surface reflectance products (MYD09, MYD09GA) and derived composites (MYD09A1, MCD43A4 and MYD13A2 - Vegetation Index) from the Moderate Resolution Imaging Spectroradiometer (MODIS) onboard the Aqua satellite to results obtained from the Multi-Angle Implementation of Atmospheric Correction (MAIAC) algorithm. MAIAC uses a new cloud screening technique, and novel aerosol retrieval and atmospheric correction procedures which are based on time-series and spatial analyses. Our results show considerable improvements of MAIAC processed surface reflectance compared to MYD09/MYD13 with noise levels reduced by a factor of up to 10. Uncertainties in the current MODIS surface reflectance product were mainly due to residual cloud and aerosol contamination which affected the Normalized Difference Vegetation Index (NDVI): During the wet season, with cloud cover ranging between 90 percent and 99 percent, conventionally processed NDVI was significantly depressed due to undetected clouds. A smaller reduction in NDVI due to increased aerosol levels was observed during the dry season, with an inverse dependence of NDVI on aerosol optical thickness (AOT). NDVI observations processed with MAIAC showed highly reproducible and stable inter-annual patterns with little or no dependence on cloud cover, and no significant dependence on AOT (p less than 0.05). In addition to a better detection of cloudy pixels, MAIAC obtained about 20-80 percent more cloud free pixels, depending on season, a considerable amount for land analysis given the very high cloud cover (75-99 percent) observed at any given time in the area. We conclude that a new generation of atmospheric correction algorithms, such as MAIAC, can help to dramatically improve vegetation estimates over tropical rain forest, ultimately leading to reduced uncertainties in satellite-derived vegetation products globally
Separated flow
A brief overview of flow separation phenomena is provided. Langley has many active research programs in flow separation related areas. Three cases are presented which describe specific examples of flow separation research. In each example, a description of the fundamental fluid physics and the complexity of the flow field is presented along with a method of either reducing or controlling the extent of separation. The following examples are discussed: flow over a smooth surface with an adverse pressure gradient; flow over a surface with a geometric discontinuity; and flow with shock-boundary layer interactions. These results will show that improvements are being made in the understanding of flow separation and its control
Spectrum of Sizes for Perfect Deletion-Correcting Codes
One peculiarity with deletion-correcting codes is that perfect
-deletion-correcting codes of the same length over the same alphabet can
have different numbers of codewords, because the balls of radius with
respect to the Levenshte\u{\i}n distance may be of different sizes. There is
interest, therefore, in determining all possible sizes of a perfect
-deletion-correcting code, given the length and the alphabet size~.
In this paper, we determine completely the spectrum of possible sizes for
perfect -ary 1-deletion-correcting codes of length three for all , and
perfect -ary 2-deletion-correcting codes of length four for almost all ,
leaving only a small finite number of cases in doubt.Comment: 23 page
- …