55,333 research outputs found
The nuclear shell effects near the r-process path in the relativistic Hartree-Bogoliubov theory
We have investigated the evolution of the shell structure of nuclei in going
from the r-process path to the neutron drip line within the framework of the
Relativistic Hartree-Bogoliubov (RHB) theory. By introducing the quartic
self-coupling of meson in the RHB theory in addition to the non-linear
scalar coupling of meson, we reproduce the available data on the shell
effects about the waiting-point nucleus Zn. With this approach, it is
shown that the shell effects at N=82 in the inaccessible region of the
r-process path become milder as compared to the Lagrangian with the scalar
self-coupling only. However, the shell effects remain stronger as compared to
the quenching exhibited by the HFB+SkP approach. It is also shown that in
reaching out to the extreme point at the neutron drip line, a terminal
situation arises where the shell structure at the magic number is washed out
significantly.Comment: 18 pages (revtex), 8 ps figures, to appear in Phys. Rev.
Isospin Dependence of the Spin-Orbit Force and Effective Nuclear Potentials,
The isospin dependence of the spin-orbit potential is investigated for an
effective Skyrme-like energy functional suitable for density dependent
Hartree-Fock calculations. The magnitude of the isospin dependence is obtained
from a fit to experimental data on finite spherical nuclei. It is found to be
close to that of relativistic Hartree models. Consequently, the anomalous kink
in the isotope shifts of Pb nuclei is well reproduced.Comment: Revised, 11 pages (Revtex) and 2 figures available upon request,
Preprint MPA-833, Physical Review Letters (in press)
Turbulence and Mixing in the Intracluster Medium
The intracluster medium (ICM) is stably stratified in the hydrodynamic sense
with the entropy increasing outwards. However, thermal conduction along
magnetic field lines fundamentally changes the stability of the ICM, leading to
the "heat-flux buoyancy instability" when and the "magnetothermal
instability" when . The ICM is thus buoyantly unstable regardless of
the signs of and . On the other hand, these
temperature-gradient-driven instabilities saturate by reorienting the magnetic
field (perpendicular to when and parallel to when ), without generating sustained convection. We show that
after an anisotropically conducting plasma reaches this nonlinearly stable
magnetic configuration, it experiences a buoyant restoring force that resists
further distortions of the magnetic field. This restoring force is analogous to
the buoyant restoring force experienced by a stably stratified adiabatic
plasma. We argue that in order for a driving mechanism (e.g, galaxy motions or
cosmic-ray buoyancy) to overcome this restoring force and generate turbulence
in the ICM, the strength of the driving must exceed a threshold, corresponding
to turbulent velocities . For weaker driving, the ICM
remains in its nonlinearly stable magnetic configuration, and turbulent mixing
is effectively absent. We discuss the implications of these findings for the
turbulent diffusion of metals and heat in the ICM.Comment: 8 pages, 2 figs., submitted to the conference proceedings of "The
Monster's Fiery Breath;" a follow up of arXiv:0901.4786 focusing on the
general mixing properties of the IC
Active biopolymer networks generate scale-free but euclidean clusters
We report analytical and numerical modelling of active elastic networks,
motivated by experiments on crosslinked actin networks contracted by myosin
motors. Within a broad range of parameters, the motor-driven collapse of active
elastic networks leads to a critical state. We show that this state is
qualitatively different from that of the random percolation model.
Intriguingly, it possesses both euclidean and scale-free structure with Fisher
exponent smaller than . Remarkably, an indistinguishable Fisher exponent and
the same euclidean structure is obtained at the critical point of the random
percolation model after absorbing all enclaves into their surrounding clusters.
We propose that in the experiment the enclaves are absorbed due to steric
interactions of network elements. We model the network collapse, taking into
account the steric interactions. The model shows how the system robustly drives
itself towards the critical point of the random percolation model with absorbed
enclaves, in agreement with the experiment.Comment: 6 pages, 7 figure
Sea-surface circulation, sediment transport, and marine mammal distribution, Alaska continental shelf
There are no author-identified significant results in this report
Transition from collisionless to collisional MRI
Recent calculations by Quataert et al. (2002) found that the growth rates of
the magnetorotational instability (MRI) in a collisionless plasma can differ
significantly from those calculated using MHD. This can be important in hot
accretion flows around compact objects. In this paper we study the transition
from the collisionless kinetic regime to the collisional MHD regime, mapping
out the dependence of the MRI growth rate on collisionality. A kinetic closure
scheme for a magnetized plasma is used that includes the effect of collisions
via a BGK operator. The transition to MHD occurs as the mean free path becomes
short compared to the parallel wavelength 2\pi/k_{\Par}. In the weak magnetic
field regime where the Alfv\'en and MRI frequencies are small compared
to the sound wave frequency k_{\Par} c_0, the dynamics are still effectively
collisionless even if , so long as the collision frequency \nu
\ll k_{\Par} c_{0}; for an accretion flow this requires \nu \lsim \Omega
\sqrt{\beta}. The low collisionality regime not only modifies the MRI growth
rate, but also introduces collisionless Landau or Barnes damping of long
wavelength modes, which may be important for the nonlinear saturation of the
MRI.Comment: 20 pages, 4 figures, submitted to ApJ with a clearer derivation of
anisotropic pressure closure from drift kinetic equatio
- …