12,381 research outputs found
Engine condition monitoring: CF6 family 60's through the 80's
The on condition program is described in terms of its effectiveness as a maintenance tool both at the line station as well as at home base by the early detection of engine faults, erroneous instrumentation signals and by verification of engine health. The system encompasses all known methods from manual procedures to the fully automated airborne integrated data system
Stratification requirements for seed dormancy alleviation in a wetland weed.
Echinochloaoryzicola(syn.E. phyllopogon) is an exotic weed of California rice paddies that has evolved resistance to multiple herbicides. Elimination of seedlingsthroughcertain weed control methods can limit the spread of this weed, but is contingent on accurate predictions of germination and emergence timing, which are influenced by seed dormancy levels.In summer annuals, dormancy can often be relieved through stratification, a period of prolonged exposure to cold and moist conditions.We used population-based threshold models to quantify the effects of stratification on seed germination of four E. Oryzicola populations at a range of water potential (Ψ) and oxygen levels. We also determined how stratification temperatures, moisture levels and durations contributed to dormancy release. Stratification released dormancy by decreasing base Ψ and hydrotimerequired for germination and by eliminating any germination sensitivity to oxygen. Stratification also increased average germination rates (GR), which were used as a proxy for relative dormancy levels. Alternating temperatures nearly doubled GR in all populations, indicating that seeds could be partially dormant despite achieving high final germination percentages. Stratification at Ψ = 0 MPa increased GR compared to stratification at lower water potentials, demonstrating that Ψ contributed to regulating dormancy release. Maximum GR occurred after 2-4 weeks of stratification at 0 MPa; GR were often more rapid for herbicide-resistant than for herbicide-susceptible seeds, implying greater dormancy in the latter. Manipulation of field conditions to promote dormancy alleviation of E. oryzicola seeds might improve the rate and uniformity of germination for seed bank depletion through seedling weed control. Our results suggest field soil saturation in winter would contribute towards E. oryzicola dormancy release and decrease the time to seedling emergence
The 1982 NASA/ASEE Summer Faculty Fellowship Program
A NASA/ASEE Summer Faculty Fellowship Research Program was conducted to further the professional knowledge of qualified engineering and science faculty members, to stimulate an exchange of ideas between participants and NASA, to enrich and refresh the research and teaching activities of participants' institutions, and to contribute to the research objectives of the NASA Centers
Research reports: The 1980 NASA/ASEE Summer Faculty Fellowship Program
The Summer Faculty Fellowship Research Program objectives are: to further the professional knowledge of qualified engineering and science faculty members; to stimulate an exchange of ideas between participants and NASA; to enrich and refresh the research and teaching activities of participants and institutions; and to contribute to the research objectives at the NASA centers. The Faculty Fellows engaged in research projects commensurate with their interests and background and worked in collaboration with a NASA/MSFC colleague
Quantum Bit String Commitment
A bit string commitment protocol securely commits classical bits in such
a way that the recipient can extract only bits of information about the
string. Classical reasoning might suggest that bit string commitment implies
bit commitment and hence, given the Mayers-Lo-Chau theorem, that
non-relativistic quantum bit string commitment is impossible. Not so: there
exist non-relativistic quantum bit string commitment protocols, with security
parameters and , that allow to commit
bits to so that 's probability of successfully cheating when revealing
any bit and 's probability of extracting more than bits of
information about the bit string before revelation are both less than
. With a slightly weakened but still restrictive definition of
security against , can be taken to be for a positive
constant . I briefly discuss possible applications.Comment: Published version. (Refs updated.
Quantum optical signal processing in diamond
Controlling the properties of single photons is essential for a wide array of
emerging optical quantum technologies spanning quantum sensing, quantum
computing, and quantum communications. Essential components for these
technologies include single photon sources, quantum memories, waveguides, and
detectors. The ideal spectral operating parameters (wavelength and bandwidth)
of these components are rarely similar; thus, frequency conversion and spectral
control are key enabling steps for component hybridization. Here we perform
signal processing of single photons by coherently manipulating their spectra
via a modified quantum memory. We store 723.5 nm photons, with 4.1 nm
bandwidth, in a room-temperature diamond crystal; upon retrieval we demonstrate
centre frequency tunability over 4.2 times the input bandwidth, and bandwidth
modulation between 0.5 to 1.9 times the input bandwidth. Our results
demonstrate the potential for diamond, and Raman memories in general, to be an
integrated platform for photon storage and spectral conversion.Comment: 6 pages, 4 figure
Storage and retrieval of ultrafast single photons using a room-temperature diamond quantum memory
We report the storage and retrieval of single photons, via a quantum memory,
in the optical phonons of room-temperature bulk diamond. The THz-bandwidth
heralded photons are generated by spontaneous parametric downconversion and
mapped to phonons via a Raman transition, stored for a variable delay, and
released on demand. The second-order correlation of the memory output is
, demonstrating preservation of non-classical
photon statistics throughout storage and retrieval. The memory is low-noise,
high-speed and broadly tunable; it therefore promises to be a versatile
light-matter interface for local quantum processing applications.Comment: 6 pages, 4 figure
Storage of polarization-entangled THz-bandwidth photons in a diamond quantum memory
Bulk diamond phonons have been shown to be a versatile platform for the
generation, storage, and manipulation of high-bandwidth quantum states of
light. Here we demonstrate a diamond quantum memory that stores, and releases
on demand, an arbitrarily polarized 250 fs duration photonic qubit. The
single-mode nature of the memory is overcome by mapping the two degrees of
polarization of the qubit, via Raman transitions, onto two spatially distinct
optical phonon modes located in the same diamond crystal. The two modes are
coherently recombined upon retrieval and quantum process tomography confirms
that the memory faithfully reproduces the input state with average fidelity
with a total memory efficiency of . In an
additional demonstration, one photon of a polarization-entangled pair is stored
in the memory. We report that entanglement persists in the retrieved state for
up to 1.3 ps of storage time. These results demonstrate that the diamond phonon
platform can be used in concert with polarization qubits, a key requirement for
polarization-encoded photonic processing
- …