21,875 research outputs found
Input-output relations for multiport ring cavities
Quantum input-output relations for a generic -port ring cavity are
obtained by modeling the ring as a cascade of interlinked beam splitters.
Cavity response to a beam impinging on one port is studied as a function of the
beam-splitter reflectivities and the internal phase-shifts. Interferometric
sensitivity and stability are analyzed as a function of the number of ports.Comment: 6 pages, 5 figures (low-res
Galaxy-CMB and galaxy-galaxy lensing on large scales: sensitivity to primordial non-Gaussianity
A convincing detection of primordial non-Gaussianity in the local form of the
bispectrum, whose amplitude is given by the fNL parameter, offers a powerful
test of inflation. In this paper we calculate the modification of two-point
cross-correlation statistics of weak lensing - galaxy-galaxy lensing and
galaxy-Cosmic Microwave Background (CMB) cross-correlation - due to fNL. We
derive and calculate the covariance matrix of galaxy-galaxy lensing including
cosmic variance terms. We focus on large scales (l<100) for which the shape
noise of the shear measurement becomes irrelevant and cosmic variance dominates
the error budget. For a modest degree of non-Gaussianity, fNL=+/-50,
modifications of the galaxy-galaxy lensing signal at the 10% level are seen on
scales R~300 Mpc, and grow rapidly toward larger scales as \propto R^2. We also
see a clear signature of the baryonic acoustic oscillation feature in the
matter power spectrum at ~150 Mpc, which can be measured by next-generation
lensing experiments. In addition we can probe the local-form primordial
non-Gaussianity in the galaxy-CMB lensing signal by correlating the lensing
potential reconstructed from CMB with high-z galaxies. For example, for
fNL=+/-50, we find that the galaxy-CMB lensing cross power spectrum is modified
by ~10% at l~40, and by a factor of two at l~10, for a population of galaxies
at z=2 with a bias of 2. The effect is greater for more highly biased
populations at larger z; thus, high-z galaxy surveys cross-correlated with CMB
offer a yet another probe of primordial non-Gaussianity.Comment: 21 pages, 30 figure
The Impact of Line Misidentification on Cosmological Constraints from Euclid and other Spectroscopic Galaxy Surveys
We perform forecasts for how baryon acoustic oscillation (BAO) scale and
redshift-space distortion (RSD) measurements from future spectroscopic emission
line galaxy (ELG) surveys such as Euclid are degraded in the presence of
spectral line misidentification. Using analytic calculations verified with mock
galaxy catalogs from log-normal simulations we find that constraints are
degraded in two ways, even when the interloper power spectrum is modeled
correctly in the likelihood. Firstly, there is a loss of signal-to-noise ratio
for the power spectrum of the target galaxies, which propagates to all
cosmological constraints and increases with contamination fraction, .
Secondly, degeneracies can open up between and cosmological parameters.
In our calculations this typically increases BAO scale uncertainties at the
10-20% level when marginalizing over parameters determining the broadband power
spectrum shape. External constraints on , or parameters determining the
shape of the power spectrum, for example from cosmic microwave background (CMB)
measurements, can remove this effect. There is a near-perfect degeneracy
between and the power spectrum amplitude for low values, where
is not well determined from the contaminated sample alone. This has the
potential to strongly degrade RSD constraints. The degeneracy can be broken
with an external constraint on , for example from cross-correlation with a
separate galaxy sample containing the misidentified line, or deeper
sub-surveys.Comment: 18 pages, 7 figures, updated to match version accepted by ApJ (extra
paragraph added at the end of Section 4.3, minor text edits
Lattice dynamics and correlated atomic motion from the atomic pair distribution function
The mean-square relative displacements (MSRD) of atomic pair motions in
crystals are studied as a function of pair distance and temperature using the
atomic pair distribution function (PDF). The effects of the lattice vibrations
on the PDF peak widths are modelled using both a multi-parameter Born
von-Karman (BvK) force model and a single-parameter Debye model. These results
are compared to experimentally determined PDFs. We find that the near-neighbor
atomic motions are strongly correlated, and that the extent of this correlation
depends both on the interatomic interactions and crystal structure. These
results suggest that proper account of the lattice vibrational effects on the
PDF peak width is important in extracting information on static disorder in a
disordered system such as an alloy. Good agreement is obtained between the BvK
model calculations of PDF peak widths and the experimentally determined peak
widths. The Debye model successfully explains the average, though not detailed,
natures of the MSRD of atomic pair motion with just one parameter. Also the
temperature dependence of the Debye model largely agrees with the BvK model
predictions. Therefore, the Debye model provides a simple description of the
effects of lattice vibrations on the PDF peak widths.Comment: 9 pages, 11 figure
Unified entropy, entanglement measures and monogamy of multi-party entanglement
We show that restricted shareability of multi-qubit entanglement can be fully
characterized by unified- entropy. We provide a two-parameter class of
bipartite entanglement measures, namely unified- entanglement with its
analytic formula in two-qubit systems for , and
. Using unified- entanglement, we establish a broad class of
the monogamy inequalities of multi-qubit entanglement for , and .Comment: 17 pages, 1 figur
Short-term, medium-term and long-term effects of early parenting interventions in low- and middle-income countries: a systematic review
INTRODUCTION: Parenting interventions during early childhood are known to improve various child development outcomes immediately following programme implementation. However, less is known about whether these initial benefits are sustained over time. METHODS: We conducted a systematic literature review of parenting interventions in low- and middle-income countries (LMICs) that were delivered during the first 3 years of life and had completed a follow-up evaluation of the intervention cohort at least 1 year after the primary postintervention endpoint. We summarized intervention effects over time by child-level and parent-level outcomes as well as by timing of follow-up rounds in the short-term (1-3 years after programme completion), medium-term (4-9 years), and long-term (10+ years). We also conducted exploratory meta-analyses to compare effects on children's cognitive and behavioral development by these subgroups of follow-up rounds. RESULTS: We identified 24 articles reporting on seven randomised controlled trials of parenting interventions delivered during early childhood that had at least one follow-up study in seven LMICs. The majority of follow-up studies were in the short-term. Three trials conducted a medium-term follow-up evaluation, and only two trials conducted a long-term follow-up evaluation. Although trials consistently supported wide-ranging benefits on early child development outcomes immediately after programme completion, results revealed a general fading of effects on children's outcomes over time. Short-term effects were mixed, and medium-term and long-term effects were largely inconclusive. The exploratory meta-analysis on cognitive development found that pooled effects were significant at postintervention and in the short-term (albeit smaller in magnitude), but the effects were not significant in the medium-term and long-term. For behavioural development, the effects were consistently null over time. CONCLUSIONS: There have been few longer-term follow-up studies of early parenting interventions in LMICs. Greater investments in longitudinal intervention cohorts are needed in order to gain a more comprehensive understanding of the effectiveness of parenting interventions over the life course and to improve the design of future interventions so they can have greater potential for achieving and sustaining programme benefits over time
Rules for Computing Symmetry, Density and Stoichiometry in a Quasi-Unit-Cell Model of Quasicrystals
The quasi-unit cell picture describes the atomic structure of quasicrystals
in terms of a single, repeating cluster which overlaps neighbors according to
specific overlap rules. In this paper, we discuss the precise relationship
between a general atomic decoration in the quasi-unit cell picture atomic
decorations in the Penrose tiling and in related tiling pictures. Using these
relations, we obtain a simple, practical method for determining the density,
stoichiometry and symmetry of a quasicrystal based on the atomic decoration of
the quasi-unit cell taking proper account of the sharing of atoms between
clusters.Comment: 14 pages, 8 figure
Slow relaxation in the Ising model on a small-world network with strong long-range interactions
We consider the Ising model on a small-world network, where the long-range
interaction strength is in general different from the local interaction
strength , and examine its relaxation behaviors as well as phase
transitions. As is raised from zero, the critical temperature also
increases, manifesting contributions of long-range interactions to ordering.
However, it becomes saturated eventually at large values of and the
system is found to display very slow relaxation, revealing that ordering
dynamics is inhibited rather than facilitated by strong long-range
interactions. To circumvent this problem, we propose a modified updating
algorithm in Monte Carlo simulations, assisting the system to reach equilibrium
quickly.Comment: 5 pages, 5 figure
- …