235 research outputs found

    Nucleosynthesis in asymptotic giant branch stars: Relevance for galactic enrichment and solar system formation

    Get PDF
    We present a review of nucleosynthesis in AGB stars outlining the development of theoretical models and their relationship to observations. We focus on the new high resolution codes with improved opacities, which recently succeeded in accounting for the third dredge-up. This opens the possibility of understanding low luminosity C stars (enriched in s-elements) as the normal outcome of AGB evolution, characterized by production of 12C and neutron-rich nuclei in the He intershell and by mass loss from strong stellar winds. Neutron captures in AGB stars are driven by two reactions: 13C(α,n)16O, which provides the bulk of the neutron flux at low neutron densities (Nn ≀ 107 n/cm3), and 22Ne(α,n)25Mg, which is mildly activated at higher temperatures and mainly affects the production of s-nuclei depending on reaction branchings. The first reaction is now known to occur in the radiative interpulse phase, immediately below the region previously homogenized by third dredge-up. The second reaction occurs during the convective thermal pulses. The resulting nucleosynthesis phenomena are rather complex and rule out any analytical approximation (exponential distribution of neutron fluences). Nucleosynthesis in AGB stars, modeled at different metallicities, account for several observational constraints, coming from a wide spectrum of sources: evolved red giants rich in s-elements, unevolved stars at different metallicities, presolar grains recovered from meteorites, and the abundances of s-process isotopes in the solar system. In particular, a good reproduction of the solar system main component is obtained as a result of Galactic chemical evolution that mixes the outputs of AGB stars of different stellar generations, born with different metallicities and producing different patterns of s-process nuclei. The main solar s-process pattern is thus not considered to be the result of a standard archetypal s-process occurring in all stars. Concerning the 13C neutron source, its synthesis requires penetration of small amounts of protons below the convective envelope, where they are captured by the abundant 12C forming a 13C-rich pocket. This penetration cannot be modeled in current evolutionary codes, but is treated as a free parameter. Future hydrodynamical studies of time dependent mixing will be required to attack this problem. Evidence of other insufficiencies in the current mixing algorithms is common throughout the evolution of low and intermediate mass stars, as is shown by the inadequacy of stellar models in reproducing the observations of CNO isotopes in red giants and in circumstellar dust grains. These observations require some circulation of matter between the bottom of convective envelopes and regions close to the H-burning shell (cool bottom processing). AGB stars are also discussed in the light of their possible contribution to the inventory of short-lived radioactivities that were found to be alive in the early solar system. We show that the pollution of the protosolar nebula by a close-by AGB star may account for concordant abundances of 26Al, 41Ca, 60Fe, and 107Pd. The AGB star must have undergone a very small neutron exposure, and be of small initial mass (M <= 1.5 [sols]). There is a shortage of 26Al in such models, that however remains within the large uncertainties of crucial reaction rates. The net 26Al production problem requires further investigation

    Systematics of the odd-even effect in the resonance ionization of Os and Ti

    Get PDF
    Measurements of the odd-even effect in the mass spectrometric analysis of Ti and Os isotopes by resonance ionization mass spectrometry have been performed for ΔJ = + 1, 0 and -1 transitions. Under saturating conditions of the ionization and for ΔJ = + 1 transitions odd-even effects are reduced below the 0.5% level. Depending on the polarization state of the laser large odd isotope enrichments are observed for ΔJ = 0 and -1 transitions which can be reduced below the 0.5% level by depolarization of the laser field

    Laser-induced isotopic selectivity in the resonance ionization of Os

    Get PDF
    Isotope selective effects in resonance ionization mass spectrometry (RIMS) pose a potentially serious limitation to the application of this technique to the precise and reproducible measurement of isotope ratios. In order to identify some of the underlying causes of isotope selectivity in RIMS and to establish procedures for minimizing these effects, we investigated laser-induced isotope selectivity in the resonance ionization of Os. A single-color, one-photon resonant ionization scheme was used for several different transitions to produce Os photoions from a thermal atomization source. Variations in Os isotope ratios were studied as a function of laser parameters such as wavelength, bandwidth, power and polarization state. Isotope selectivity is strongly dependent on laser power and wavelength, even when the bandwidth of the laser radiation is much larger than the optical isotope shift. Variations in the ^(190)Os/^(188)Os ratio of ≈20% for a detuning of 0.8 cm^(−1) were observed on a transition with a small oscillator strength. Large even—odd isotope selectivity with a 13% depletion of ^(189)Os was observed on a ΔJ = +1 transition at low laser intensity; the odd mass Os isotopes are systematically depleted. For ΔJ = −1 and 0 transitions the isotope selectivity was reduced by polarization scrambling and for strongly saturating conditions. A technique employing the wavelength dependence of even—even isotope selectivity as an internal wavelength standard was developed to permit accurate and reproducible wavelength adjustment of the laser radiation. This technique provides control over laser-induced isotope selectivity for single-color ionization and enabled us to obtain reproducible measurements of ^(192)Os/^(188)Os and ^(189)Os/^(190)Os ratios in the saturation regime for a ΔJ = +1 transition with a precision of better than 0.5%. The application of this wavelength-tuning procedure should significantly improve the quality of RIMS isotope ratio data for many elements

    Systematics of isotope ratio measurements with resonant laser photoionization sources

    Get PDF
    Sources of laser-induced even-even and odd-even isotopic selectivity in the resonance ionization mass spectroscopy of Os and Ti have been investigated experimentally for various types of transitions. A set of conditions with regard to laser bandwidth and frequency tuning, polarization state and intensity was obtained for which isotopic selectivity is either absent or reduced below the 2 % level

    A Model for Abundances in Metal-Poor Stars

    Get PDF
    It is argued that the abundances of r-process related elements in stars with -3<[Fe/H]<-1 can be explained by the contributions of three sources. The sources are: the first generations of very massive (>100 solar masses) stars that are formed from Big Bang debris and are distinct from SNII, and two types of SNII, the H and L events, which can occur only at [Fe/H]>-3. The H events are of high frequency and produce dominantly heavy (A>130) r-elements but no Fe (presumably leaving behind black holes). The L events are of low frequency and produce Fe and dominantly light (A<130) r-elements (essentially none above Ba). By using the observed abundances in two ultra-metal-poor stars and the solar r-abundances, the initial or prompt inventory of elements produced by the first generations of very massive stars and the yields of H and L events can be determined. The abundances of a large number of elements in a star can then be calculated from the model by using only the observed Eu and Fe abundances. To match the model results and the observational data for stars with -3<[Fe/H]<-1 requires that the solar r-abundances for Sr, Y, Zr, and Ba must be significantly increased from the standard values. Whether the solar r-components of these elements used here to obtain a fit to the stellar data can be reconciled with those obtained from solar abundances by subtracting the s-components calculated from models is not clear.Comment: 47 pages, 19 figures, to appear in Ap

    A Geochronologic Study of a Granite Pluton from the Llano Uplift, Texas

    Get PDF
    Granite and related pegmatite and aplite from several localities within a pluton from the Llano uplift, Texas, are being studied geochronologically. Biotite, muscovite, hornblende, microcline, plagioclase, quartz, apatite, and fluorite have been analyzed by refined chemical and mass spectrometric methods in order to determine the consistency in ages between various minerals and between different localities within an individual pluton. Field and petrologic evidence suggests that this intrusive has had a simple history of emplacement and no later metamorphism. Quadruplicate analyses on a master biotite yield K-Ar and Rb-Sr ages reproducible to 1 per cent. In most cases K-Ar determinations on biotites, muscovites, and hornblendes and Rb-Sr determinations on biotites, muscovites, and microclines give ages which fall within a 5 per cent spread. A half-life of 1.307 X 10^9 years and a branching ratio of 0.124 are used to calculate the K-Ar ages, and Rb-Sr ages are calculated with a half-life of 50 X 10^9 years. The average age of the pluton thus determined is 1060 m.y. K-Ar determinations on microclines give ages which are 5 to 15 per cent lower. One plagioclase from the granite gives a K-Ar age of 920 m.y. Two suites of biotites, one from pegmatites and one from a border facies of the granite, give anomalously low Rb-Sr ages. The pegmatitic biotite also has a somewhat low K-Ar age; however, the biotite from the granite gives a normal age by this method, as do coexisting microclines from both these rocks by the Rb-Sr method. Geologic evidence suggests that meteoric or hydrothermal fluids may have been responsible for this age discrepancy. Ages determined on a gneiss, a pegmatite cutting the gneiss, and a granite porphyry all give results approximately equal to those of the granite. No evidence of a significantly older basement rock or a younger igneous or metamorphic event in the area has been obtained to date

    Prompt Iron Enrichment, Two r-Process Components, and Abundances in Very Metal-Poor Stars

    Get PDF
    We present a model to explain the wide range of abundances for heavy r-process elements (mass number A > 130) at low [Fe/H]. This model requires rapid star formation and/or an initial population of supermassive stars in the earliest condensed clots of matter to provide a prompt or initial Fe inventory. Subsequent Fe and r-process enrichment was provided by two types of supernovae: one producing heavy r-elements with no Fe on a rather short timescale and the other producing light r-elements (A < or = 130) with Fe on a much longer timescale.Comment: 5 pages, 2 postscript figures, to appear in ApJ

    Evolution of O Abundance Relative to Fe

    Get PDF
    We present a three-component mixing model for the evolution of O abundance relative to Fe, taking into account the contributions of the first very massive (> 100 solar masses) stars formed from Big Bang debris. We show that the observations of O and Fe abundances in metal-poor stars in the Galaxy by Israelian et al. and Boesgaard et al. can be well represented both qualitatively and quantitatively by this model. Under the assumption of an initial Fe ([Fe/H] = -3) and O inventory due to the prompt production by the first very massive stars, the data at -3 < [Fe/H] < -1 are interpreted to result from the addition of O and Fe only from type II supernovae (SNII) to the prompt inventory. At [Fe/H] = -1, SNII still contribute O while both SNII and type Ia supernovae contribute Fe. During this later stage, (O/Fe) sharply drops off to an asymptotic value of 0.8(O/Fe)_sun. The value of (O/Fe) for the prompt inventory at [Fe/H] = -3 is found to be (O/Fe) = 20(O/Fe)_sun. This result suggests that protogalaxies with low ``metallicities'' should exhibit high values of (O/Fe). The C/O ratio produced by the first very massive stars is expected to be much less than 1 so that all the C should be tied up as CO and that C dust and hydrocarbon compounds should be quite rare at epochs corresponding to [Fe/H] < -3.Comment: 25 pages, 8 postscript figures, to appear in Ap
    • 

    corecore