61 research outputs found
A new vetulicolian from Australia and its bearing on the chordate affinities of an enigmatic Cambrian group
BACKGROUND: Vetulicolians are one of the most problematic and controversial Cambrian fossil groups, having been considered as arthropods, chordates, kinorhynchs, or their own phylum. Mounting evidence suggests that vetulicolians are deuterostomes, but affinities to crown-group phyla are unresolved. RESULTS: A new vetulicolian from the Emu Bay Shale Konservat-Lagerstätte, South Australia, Nesonektris aldridgei gen. et sp. nov., preserves an axial, rod-like structure in the posterior body region that resembles a notochord in its morphology and taphonomy, with notable similarity to early decay stages of the notochord of extant cephalochordates and vertebrates. Some of its features are also consistent with other structures, such as a gut or a coelomic cavity. CONCLUSIONS: Phylogenetic analyses resolve a monophyletic Vetulicolia as sister-group to tunicates (Urochordata) within crown Chordata, and this holds even if they are scored as unknown for all notochord characters. The hypothesis that the free-swimming vetulicolians are the nearest relatives of tunicates suggests that a perpetual free-living life cycle was primitive for tunicates. Characters of the common ancestor of Vetulicolia + Tunicata include distinct anterior and posterior body regions – the former being non-fusiform and used for filter feeding and the latter originally segmented – plus a terminal mouth, absence of pharyngeal bars, the notochord restricted to the posterior body region, and the gut extending to the end of the tail. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1186/s12862-014-0214-z) contains supplementary material, which is available to authorized users
Assembling the lophotrochozoan (=spiralian) tree of life
The advent of numerical methods for analysing phylogenetic relationships, along with the study of morphology and molecular data, has driven our understanding of animal relationships for the past three decades. Within the protostome branch of the animal tree of life, these data have sufficed to establish its two main side branches, the moulting Ecdysozoa and the non-moulting Lophotrochozoa. In this review, I explore our current knowledge of protostome relationships and discuss progress and future perspectives and strategies to increase resolution within the main lophotrochozoan clades. Novel approaches to coding morphological characters are needed by scoring real observations on species selected as terminals. Still, methodological issues, for example, how to deal with inapplicable characters or the coding of absences, may require novel algorithmic developments. Taxon sampling is another key issue, as phyla should include enough species so as to represent their span of anatomical disparity. On the molecular side, phylogenomics is playing an increasingly important role in elucidating animal relationships, but genomic sampling is still fairly limited within the lophotrochozoan protostomes, for which only three phyla are represented in currently available phylogenies. Future work should therefore concentrate on generating novel morphological observations and on producing genomic data for the lophotrochozoan side of the animal tree of life
- …