1,119 research outputs found

    Simulating the sintering of powder particles during the preheating step of Electron Beam Melting process: Review, challenges and a proposal

    Get PDF
    The powder bed preheating before melting is a distinctive manufacturing step of the Electron Beam Melting (EBM) process. During preheating slight sintering occurs and small necks are formed between neighbouring particles. The necks improve the heat transfer and the powder bed strength allowing a reduction of supports structures and the neutralisation of the so-called smoke. However, preheating may represent over 50% of the total production time. This work investigates the major strategies in literature for preheating phase optimisation and proposes a numerical simulation approach to evaluate the neck growth and the corresponding sintering level

    Effect of the Sintering Conditions on the Neck Growth during the Powder Bed Fusion with Electron Beam (PBF-EB) Process

    Get PDF
    A distinctive characteristic of the powder bed fusion with electron beam (PBF-EB) process is the sintering of the powder particles. For certain metallic materials, this is crucial for the success of the subsequent step, the melting, and, generally, the whole process. Despite the sintering mechanisms that occur during the PBF-EB process being similar to well-known powder metallurgy, the neck growth rates are significantly different. Therefore, specific analyses are needed to understand the influence of the PBF-EB process conditions on neck growth and neck growth rate. Additionally, some aspects, such as the rigid body motion of the particles during the sintering process, are still challenging to analyze. This work systematically investigated the effects of different particle diameters and particle diameter ratios. Additionally, the impact of the rigid body motion of the particles in the sintering was analyzed. This work demonstrated that the sintering results significantly depended on the EB-PBF process conditions

    On the Telegraph Process Driven by Geometric Counting Process with Poisson-Based Resetting

    Get PDF
    We investigate the effects of the resetting mechanism to the origin for a random motion on the real line characterized by two alternating velocities v1 and v2 . We assume that the sequences of random times concerning the motions along each velocity follow two independent geometric counting processes of intensity λ , and that the resetting times are Poissonian with rate ξ> 0 . Under these assumptions we obtain the probability laws of the modified telegraph process describing the position and the velocity of the running particle. Our approach is based on the Markov property of the resetting times and on the knowledge of the distribution of the intertimes between consecutive velocity changes. We obtain also the asymptotic distribution of the particle position when (i) λ tends to infinity, and (ii) the time goes to infinity. In the latter case the asymptotic distribution arises properly as an effect of the resetting mechanism. A quite different behavior is observed in the two cases when v2< 0 < v1 and 0 < v2< v1 . Furthermore, we focus on the determination of the moment-generating function and on the main moments of the process describing the particle position under reset. Finally, we analyse the mean-square distance between the process subject to resets and the same process in absence of resets. Quite surprisingly, the lowest mean-square distance can be found for ξ= 0 , for a positive ξ , or for ξ→ + ∞ depending on the choice of the other parameters

    Build orientation effect on Ti6Al4V thin-wall topography by electron beam powder bed fusion

    Get PDF
    Additive Manufacturing is a key enabling technology for Industry 4.0 and the Green Deal, allowing more efficient resources exploitation while providing innovative design to critical components. Electron Beam Powder Bed Fusion (EB-PBF) is an edge technology for many sectors, i.e. aerospace, medical, and automotive. The control of the surface finish by surface topography measurements is essential to engineer surface functional properties, whose specifications are application specific. This works investigates the effect of thin-wall orientation and surface inclination on the topography, described by areal field and feature parameters, to provide designers with a useful tool in the early stage of product development and tolerance specification and verificatio

    Renewable Resources for Enantiodiscrimination: Chiral Solvating Agents for NMR Spectroscopy from Isomannide and Isosorbide

    Get PDF
    A new family of chiral selectors was synthesized in a single synthetic step with yields up to 84% starting from isomannide and isosorbide. Mono- or disubstituted carbamate derivatives were obtained by reacting the isohexides with electron-donating arylisocyanate (3,5-dimethylphenyl- or 3,5-dimethoxyphenyl-) and electron-withdrawing arylisocyanate (3,5-bis(trifluoromethyl)phenyl-) groups to test opposite electronic effects on enantiodifferentiation. Deeper chiral pockets and derivatives with more acidic protons were obtained by derivatization with 1-naphthylisocyanate and p-toluenesulfonylisocyanate, respectively. All compounds were tested as chiral solvating agents (CSAs) in H-1 NMR experiments with rac-N-3,5-dinitrobenzoylphenylglycine methyl ester in order to determine the influence of different structural features on the enantiodiscrimination capabilities. Some selected compounds were tested with other racemic analytes, still leading to enantiodiscrimination. The enantiodiscrimination conditions were then optimized for the best CSA/analyte couple. Finally, a 2D- and 1D-NMR study was performed employing the best performing CSA with the two enantiomers of the selected analyte, aiming to determine the enantiodiscrimination mechanism, the stoichiometry of interaction, and the complexation constant

    Accuracy of complex internal channels produced by laser powder bed fusion process

    Get PDF
    Additive manufacturing (AM) technology has great potential in manufacturing complex internal channels for several applications such as satellite-communication microwave systems. These systems can have complex shapes and make traditional finishing processes a challenge for additive parts. Therefore, it is desirable that the internal surfaces are as close as possible to the tolerance of the field of application. In this study, a complex component, a unique waveguide device with bending, twisting and filtering functionalities, has been designed and manufactured in AlSi10Mg alloy through laser powder bed fusion (L-PBF) process. Three different prototypes with three different curvature (R of 50 mm, 40 mm and 30 mm), operating in Ku/K band, have been manufactured and tested showing a very good agreement with the desired performances. Using 3D scan data, the internal deviations from the CAD model have been evaluated showing an average deviation of the internal areas of about 0.08 mm, 0.046 mm and 0.023 mm from the CAD model for the R of 50 mm, 40 mm and 30 mm respectively The surface roughness measured in the internal channel is about Ra (arithmetic average roughness) of 8 μm ± 1.3 μm and Rz (average maximum height of the roughness profile) of 62.3 μm ± 0.34 μm

    Quantifying the relationship between mechanical loading and the skeletal response in pre- and early-pubertal girls

    Full text link
    PURPOSEBefore exercise prescription for bone health can be recommended, the relationship between mechanical loading characteristics and the skeletal response need to be quantified. We asked i) does moderate impact exercise result in a greater gain in BMC than low impact exercise, ii) what are the loading characteristics associated with a moderate and low impact exercise program and does this differ from non-structured play?, and iii) does loading history affect the osteogenic response to a moderate or low impact program? METHODSSixty-eight pre- and early-pubertal girls (aged 8.9 +/- 0.2 yrs) were randomized to take part in a moderate or low impact exercise program 3 times/wk for 8.5 mnths. The number and type of loads associated with the exercise classes and non-structured play (recess) were assessed from video footage. The magnitude of load was assessed using a pedar in-sole mobile system. Hours of moderate and high impact organized sport were assessed from a physical activity questionnaire. RESULTSThe moderate and low impact exercise programs consisted of -400 impacts per class, but the jumping, hopping and dynamic activities performed during the moderate impact program produced forces ranging from 2 to 4 times body weight (BW) compared to -1 BW for the low impact program. Moderate impact exercise resulted in a 2.7% greater gain in BMC at the tibia compared to the low impact exercise. The moderate impact exercise program consisted of fewer low impacts (1-2 BW) and a higher number of moderate impacts (2-4BW) compared to those typically performed during non-structured play. There were greater gains in BMC in subjects participating in the moderate versus the low impact exercise programs who participated in 2 to 3 hours of moderate impact sports outside school (2.5% to 4.5%, p CONCLUSIONApproximately 400 impacts ranging 2-4 BW, 3 times/wk was enough stimuli to result in an osteogenic response in normally active girls; even in those actively involved in moderate impact sports outside school.<br /

    Endothelial cells, endoplasmic reticulum stress and oxysterols

    Get PDF
    Oxysterols are bioactive lipids that act as regulators of lipid metabolism, inflammation, cell viability and are involved in several diseases, including atherosclerosis. Mounting evidence linked the atherosclerosis to endothelium dysfunction; in fact, the endothelium regulates the vascular system with roles in processes such as hemostasis, cell cholesterol, hormone trafficking, signal transduction and inflammation. Several papers shed light the ability of oxysterols to induce apoptosis in different cell lines including endothelial cells. Apoptotic endothelial cell and endothelial denudation may constitute a critical step in the transition to plaque erosion and vessel thrombosis, so preventing the endothelial damaged has garnered considerable attention as a novel means of treating atherosclerosis. Endoplasmic reticulum (ER) is the site where the proteins are synthetized and folded and is necessary for most cellular activity; perturbations of ER homeostasis leads to a condition known as endoplasmic reticulum stress. This condition evokes the unfolded protein response (UPR) an adaptive pathway that aims to restore ER homeostasis. Mounting evidence suggests that chronic activation of UPR leads to cell dysfunction and death and recently has been implicated in pathogenesis of endothelial dysfunction. Autophagy is an essential catabolic mechanism that delivers misfolded proteins and damaged organelles to the lysosome for degradation, maintaining basal levels of autophagic activity it is critical for cell survival. Several evidence suggests that persistent ER stress often results in stimulation of autophagic activities, likely as a compensatory mechanism to relieve ER stress and consequently cell death. In this review, we summarize evidence for the effect of oxysterols on endothelial cells, especially focusing on oxysterols-mediated induction of endoplasmic reticulum stress
    • …
    corecore