1,900 research outputs found

    Effective Actions for Heterotic M-Theory

    Get PDF
    We discuss the moduli space approximation for heterotic M-theory, both for the minimal case of two boundary branes only, and when a bulk brane is included. The resulting effective actions may be used to describe the cosmological dynamics in the regime where the branes are moving slowly, away from singularities. We make use of the recently derived colliding branes solution to determine the global structure of moduli space, finding a boundary at which the trajectories undergo a hard wall reflection. This has important consequences for the allowed moduli space trajectories, and for the behaviour of cosmological perturbations in the model.Comment: 21 pages, 4 figures. References added and some discussions clarifie

    The Holographic Universe

    Get PDF
    We present a holographic description of four-dimensional single-scalar inflationary universes in terms of a three-dimensional quantum field theory. The holographic description correctly reproduces standard inflationary predictions in their regime of applicability. In the opposite case, wherein gravity is strongly coupled at early times, we propose a holographic description in terms of perturbative QFT and present models capable of satisfying the current observational constraints while exhibiting a phenomenology distinct from standard inflation. This provides a qualitatively new method for generating a nearly scale-invariant spectrum of primordial cosmological perturbations.Comment: 20 pages, 5 figs; extended version of arXiv:0907.5542 including background material and detailed derivations. To appear in Proceedings of 1st Mediterranean Conference on Classical and Quantum Gravit

    Universality of Cluster Dynamics

    Full text link
    We have studied the kinetics of cluster formation for dynamical systems of dimensions up to n=8n=8 interacting through elastic collisions or coalescence. These systems could serve as possible models for gas kinetics, polymerization and self-assembly. In the case of elastic collisions, we found that the cluster size probability distribution undergoes a phase transition at a critical time which can be predicted from the average time between collisions. This enables forecasting of rare events based on limited statistical sampling of the collision dynamics over short time windows. The analysis was extended to Lp^p-normed spaces (p=1,...,p=1,...,\infty) to allow for some amount of interpenetration or volume exclusion. The results for the elastic collisions are consistent with previously published low-dimensional results in that a power law is observed for the empirical cluster size distribution at the critical time. We found that the same power law also exists for all dimensions n=2,...,8n=2,...,8, 2D Lp^p norms, and even for coalescing collisions in 2D. This broad universality in behavior may be indicative of a more fundamental process governing the growth of clusters

    PII: S0966-842X(97)01185-2

    Get PDF
    Microsporidia are obligate intracellular parasites that infect a wide range of eukaryotes, causing severe diseases in immunocompromised humans and losses to apiaries, fisheries and silk farms. They have often been considered to be primitive eukaryotes; however, more recent evidence suggests they are more closely related to fungi

    Colliding Branes in Heterotic M-theory

    Get PDF
    We study the collision of two flat, parallel end-of-the-world branes in heterotic M-theory. By insisting that there is no divergence in the Riemann curvature as the collision approaches, we are able to single out a unique solution possessing the local geometry of (2d compactified Milne)/Z_2 x R_3, times a finite-volume Calabi-Yau manifold in the vicinity of the collision. At a finite time before and after the collision, a second type of singularity appears momentarily on the negative-tension brane, representing its bouncing off a zero of the bulk warp factor. We find this singularity to be remarkably mild and easily regularised. The various different cosmological solutions to heterotic M-theory previously found by other authors are shown to merely represent different portions of a unique flat cosmological solution to heterotic M-theory.Comment: 29 pp, 4 figs; Appendix B revised to include junction condition for scala

    Differential gene transfers and gene duplications in primary and secondary endosymbioses

    Get PDF
    BACKGROUND: Most genes introduced into phototrophic eukaryotes during the process of endosymbiosis are either lost or relocated into the host nuclear genome. In contrast, groEL homologues are found in different genome compartments among phototrophic eukaryotes. Comparative sequence analyses of recently available genome data, have allowed us to reconstruct the evolutionary history of these genes and propose a hypothesis that explains the unusual genome distribution of groEL homologues. RESULTS: Our analyses indicate that while two distinct groEL genes were introduced into eukaryotes by a progenitor of plastids, these particular homologues have not been maintained in all evolutionary lineages. This is of significant interest, because two chaperone proteins always co-occur in oxygenic photosynthetic organisms. We infer strikingly different lineage specific processes of evolution involving deletion, duplication and targeting of groEL proteins. CONCLUSION: The requirement of two groEL homologues for chaperon function in phototrophs has provided a constraint that has shaped convergent evolutionary scenarios in divergent evolutionary lineages. GroEL provides a general evolutionary model for studying gene transfers and convergent evolutionary processes among eukaryotic lineages

    Many-worlds interpretation of quantum theory and mesoscopic anthropic principle

    Full text link
    We suggest to combine the Anthropic Principle with Many-Worlds Interpretation of Quantum Theory. Realizing the multiplicity of worlds it provides an opportunity of explanation of some important events which are assumed to be extremely improbable. The Mesoscopic Anthropic Principle suggested here is aimed to explain appearance of such events which are necessary for emergence of Life and Mind. It is complementary to Cosmological Anthropic Principle explaining the fine tuning of fundamental constants. We briefly discuss various possible applications of Mesoscopic Anthropic Principle including the Solar Eclipses and assembling of complex molecules. Besides, we address the problem of Time's Arrow in the framework of Many-World Interpretation. We suggest the recipe for disentangling of quantities defined by fundamental physical laws and by an anthropic selection.Comment: 11 page
    corecore