3,339 research outputs found

    Remote Sensing of Tropical Ecosystems: Atmospheric Correction and Cloud Masking Matter

    Get PDF
    Tropical rainforests are significant contributors to the global cycles of energy, water and carbon. As a result, monitoring of the vegetation status over regions such as Amazonia has been a long standing interest of Earth scientists trying to determine the effect of climate change and anthropogenic disturbance on the tropical ecosystems and its feedback on the Earth's climate. Satellite-based remote sensing is the only practical approach for observing the vegetation dynamics of regions like the Amazon over useful spatial and temporal scales, but recent years have seen much controversy over satellite-derived vegetation states in Amaznia, with studies predicting opposite feedbacks depending on data processing technique and interpretation. Recent results suggest that some of this uncertainty could stem from a lack of quality in atmospheric correction and cloud screening. In this paper, we assess these uncertainties by comparing the current standard surface reflectance products (MYD09, MYD09GA) and derived composites (MYD09A1, MCD43A4 and MYD13A2 - Vegetation Index) from the Moderate Resolution Imaging Spectroradiometer (MODIS) onboard the Aqua satellite to results obtained from the Multi-Angle Implementation of Atmospheric Correction (MAIAC) algorithm. MAIAC uses a new cloud screening technique, and novel aerosol retrieval and atmospheric correction procedures which are based on time-series and spatial analyses. Our results show considerable improvements of MAIAC processed surface reflectance compared to MYD09/MYD13 with noise levels reduced by a factor of up to 10. Uncertainties in the current MODIS surface reflectance product were mainly due to residual cloud and aerosol contamination which affected the Normalized Difference Vegetation Index (NDVI): During the wet season, with cloud cover ranging between 90 percent and 99 percent, conventionally processed NDVI was significantly depressed due to undetected clouds. A smaller reduction in NDVI due to increased aerosol levels was observed during the dry season, with an inverse dependence of NDVI on aerosol optical thickness (AOT). NDVI observations processed with MAIAC showed highly reproducible and stable inter-annual patterns with little or no dependence on cloud cover, and no significant dependence on AOT (p less than 0.05). In addition to a better detection of cloudy pixels, MAIAC obtained about 20-80 percent more cloud free pixels, depending on season, a considerable amount for land analysis given the very high cloud cover (75-99 percent) observed at any given time in the area. We conclude that a new generation of atmospheric correction algorithms, such as MAIAC, can help to dramatically improve vegetation estimates over tropical rain forest, ultimately leading to reduced uncertainties in satellite-derived vegetation products globally

    The Off-nuclear Starbursts In NGC 4038/4039 (The Antennae Galaxies)

    Full text link
    Imaging of the Antennae galaxies (NGC 4038/4039) with the Infrared Array Camera (IRAC) aboard the Spitzer Space Telescope reveals large concentrations of star forming activity away from both nuclei of the two merging galaxies. These images confirm earlier findings based on ISO data with lower angular resolution. The short wavelength emission shows numerous compact sources identified as stellar clusters. At the longer wavelengths, bright, more amorphous and filamentary features correlate well with the known distributions of denser gas, warm dust, and HII regions. There are also fainter, more diffuse components at all wavelengths that permeate the entire region and extend into the two tidal tails. Non-stellar dust emission dominates the 5.8 and 8.0 micron images, accounting for as much as 79% of the light at 5.8 micron and 95% at 8 micron, averaged over the entire galaxy. Assuming that the non-stellar emission traces star formation, the IRAC data provide a view into the total underlying star forming activities unaffected by obscuration. Using the flux ratio of non-stellar to stellar emission as a guide, we map the local star formation rate in the Antennae and compare that to similar measurements in both normal and infrared-luminous galaxies. This rate in the active regions is found to be as high as those seen in starburst and some ultra-luminous infrared galaxies on ``per unit mass'' basis. The two galactic centers actually have lower star forming rates than the off-nuclear regions despite the presence of abundant dense gas and dust, suggesting that the latter is a necessary but not sufficient condition for on-going star formation.Comment: 13 pages, 3 figures, to appear in the ApJ Supplement, September 2004 (Spitzer Special Issue

    Information theory explanation of the fluctuation theorem, maximum entropy production and self-organized criticality in non-equilibrium stationary states

    Full text link
    Jaynes' information theory formalism of statistical mechanics is applied to the stationary states of open, non-equilibrium systems. The key result is the construction of the probability distribution for the underlying microscopic phase space trajectories. Three consequences of this result are then derived : the fluctuation theorem, the principle of maximum entropy production, and the emergence of self-organized criticality for flux-driven systems in the slowly-driven limit. The accumulating empirical evidence for these results lends support to Jaynes' formalism as a common predictive framework for equilibrium and non-equilibrium statistical mechanics.Comment: 21 pages, 0 figures, minor modifications, version to appear in J. Phys. A. (2003

    Site-selective adsorption of naphthalene-tetracarboxylic-dianhydride on Ag(110): First-principles calculations

    Full text link
    The mechanism of adsorption of the 1,4,5,8-naphthalene-tetracarboxylic-dianhydride (NTCDA) molecule on the Ag(110) surface is elucidated on the basis of extensive density functional theory calculations. This molecule, together with its perylene counterpart, PTCDA, are archetype organic semiconductors investigated experimentally over the past 20 years. We find that the bonding of the molecule to the substrate is highly site-selective, being determined by electron transfer to the LUMO of the molecule and local electrostatic attraction between negatively charged carboxyl oxygens and positively charged silver atoms in [1-10] atomic rows. The adsorption energy in the most stable site is 0.9eV. A similar mechanism is expected to govern the adsorption of PTCDA on Ag(110) as well.Comment: 8 pages, 4 figures, high-quality figures available upon reques

    UBVJHKLM photometry and modeling of R Coronae Borealis

    Get PDF
    We present the results of UBVJHKLM photometry of R CrB spanning the period from 1976 to 2001. Studies of the optical light curve have shown no evidence of any stable harmonics in the variations of the stellar emission. In the L band we found semi-regular oscillations with the two main periods of ~3.3 yr and 11.9 yr and the full amplitude of ~0.8 mag and ~0.6 mag, respectively. The colors of the warm dust shell (resolved by Ohnaka et al. 2001) are found to be remarkably stable in contrast to its brightness. This indicates that the inner radius is a constant, time-independent characteristic of the dust shell. The observed behavior of the IR light curve is mainly caused by the variation of the optical thickness of the dust shell within the interval \tau(V)= 0.2-0.4. Anticorrelated changes of the optical brightness (in particular with P ~ 3.3 yr) have not been found. Their absence suggests that the stellar wind of R CrB deviates from spherical symmetry. The light curves suggest that the stellar wind is variable. The variability of the stellar wind and the creation of dust clouds may be caused by some kind of activity on the stellar surface. With some time lag, periods of increased mass-loss cause an increase in the dust formation rate at the inner boundary of the extended dust shell and an increase in its IR brightness. We have derived the following parameters of the dust shell (at mean brightness) by radiative transfer modeling: inner dust shell radius r_in ~ 110 R_*, temperature T_dust(r_in) ~ 860 K, dust density \rho_dust(r_in) ~ 1.1x10^{-20} g cm^-3, optical depth \tau(V) ~ 0.32 at 0.55 micron, mean dust formation rate [dM/dt]_dust ~ 3.1x10^-9 M_sun / yr, mass-loss rate [dM/dt]_gas ~ 2.1x10^-7 M_sun / yr, size of the amorphous carbon grains <(~) 0.01 micron, and B-V ~ -0.28.Comment: 9 pages, 6 figures, accepted for publication in A&

    Steric repulsion and van der Waals attraction between flux lines in disordered high Tc superconductors

    Full text link
    We show that in anisotropic or layered superconductors impurities induce a van der Waals attraction between flux lines. This attraction together with the disorder induced repulsion may change the low B - low T phase diagram significantly from that of the pure thermal case considered recently by Blatter and Geshkenbein [Phys. Rev. Lett. 77, 4958 (1996)].Comment: Latex, 4 pages, 1 figure (Phys. Rev. Lett. 79, 139 (1997)

    Validating a Shortened Depression Scale (10 Item CES-D) among HIV-Positive People in British Columbia, Canada

    Get PDF
    Objective To establish the reliability and validity of a shortened (10-item) depression scale used among HIV-positive patients enrolled in the Drug Treatment Program in British Columbia, Canada. Methods The 10-item CES-D (Center for Epidemiologic Studies Depression Scale) was examined among 563 participants who initiated antiretroviral therapy (ART) between August 1, 1996 and June 30, 2002. Internal consistency of the scale was measured by Cronbach’s alpha. Using the original CES-D 20 as primary criteria, comparisons were made using the Kappa statistic. Predictive accuracy of CES-D 10 was assessed by calculating sensitivity, specificity, positive predictive values and negative predictive values. Factor analysis was also performed to determine if the CES-D 10 contained the same factors of positive and negative affect found in the original development of the CES-D. Results The correlation between the original and the shortened scale is very high (Spearman correlation coefficient = 0.97 (P&lt;0.001). Internal consistency reliability coefficients of the CES-D 10 were satisfactory (Cronbach α = 0.88). The CES-D 10 showed comparable accuracy to the original CES-D 20 in classifying participants with depressive symptoms (Kappa = 0.82, P&lt;0.001). Sensitivity of CES-D 10 was 91%; specificity was 92%; and positive predictive value was 92%. Factor analysis demonstrates that CES-D 10 contains the same underlying factors of positive and negative affect found in the original development of the CES-D 20. Conclusion The 10-item CES-D is a comparable tool to measure depressive symptoms among HIV-positive research participants

    The IRAC Shallow Survey

    Full text link
    The IRAC shallow survey covers 8.5 square degrees in the NOAO Deep Wide-Field Survey in Bootes with 3 or more 30 second exposures per position. An overview of the survey design, reduction, calibration, star-galaxy separation, and initial results is provided. The survey includes approximately 370,000, 280,000, 38,000, and 34,000 sources brighter than the 5 sigma limits of 6.4, 8.8, 51, and 50 microJy at 3.6, 4.5, 5.8, and 8 microns respectively, including some with unusual spectral energy distributions.Comment: To appear in ApJS, Spitzer special issue. For full resolution see http://cfa-www.harvard.edu/irac/publication

    Dynamic Scaling of Ion-Sputtered Surfaces

    Get PDF
    We derive a stochastic nonlinear equation to describe the evolution and scaling properties of surfaces eroded by ion bombardment. The coefficients appearing in the equation can be calculated explicitly in terms of the physical parameters characterizing the sputtering process. We find that transitions may take place between various scaling behaviors when experimental parameters such as the angle of incidence of the incoming ions or their average penetration depth, are varied.Comment: 13 pages, Revtex, 2 figure

    The Truncated Disk of CoKu Tau/4

    Full text link
    We present a model of a dusty disk with an inner hole which accounts for the Spitzer Space Telescope Infrared Spectrograph observations of the low-mass pre-main sequence star CoKu Tau/4. We have modeled the mid-IR spectrum (between 8 and 25 mic) as arising from the inner wall of a disk. Our model disk has an evacuated inner zone of radius ~ 10 AU, with a dusty inner ``wall'', of half-height ~ 2 AU, that is illuminated at normal incidence by the central star. The radiative equilibrium temperature decreases from the inner disk edge outward through the optically-thick disk; this temperature gradient is responsible for the emission of the silicate bands at 10 and 20 mic. The observed spectrum is consistent with being produced by Fe-Mg amorphous glassy olivine and/or pyroxene, with no evidence of a crystalline component. The mid-infrared spectrum of CoKu Tau/4 is reminiscent of that of the much older star TW Hya, where it has been suggested that the significant clearing of its inner disk is due to planet formation. However, no inner disk remains in CoKu Tau/4, consistent with the star being a weak-emission (non-accreting) T Tauri star. The relative youth of CoKu Tau/4 (~ 1 Myr) may indicate much more rapid planet formation than typically assumed.Comment: 32 pages, 9 figures, accepted in Ap
    • 

    corecore