754 research outputs found

    The warm absorber in NGC 5548: The lean years

    Full text link
    We study the variability of the warm absorber and the gas responsible for the emission lines in the Seyfert 1 galaxy NGC 5548, in order to constrain the location and physical properties of these components. Using X-ray spectra taken with the \textit{Chandra}−-LETGS in 2002 and 2005, we study variability in the ionic column densities and line intensities. We find a lower \ion{O}{vii} forbidden emission line flux in 2005, while the Fe Kα\alpha line flux stays constant. The warm absorber is less ionized in 2005, allowing us to constrain its location to within 7 pc of the central source. Using both the observed variability and the limit on the FWHM of the \ion{O}{vii} f line, we have constrained the location of the narrow line region to a distance of 1 pc from the central source. The apparent lack of variability of the Fe Kα \alpha line flux does not allow for a unique explanation.Comment: 6 pages, 6 figures, accepted by A&

    Probing the Complex and Variable X-ray Absorption of Markarian 6 with XMM-Newton

    Full text link
    We report on an X-ray observation of the Seyfert 1.5 galaxy Mrk 6 obtained with the EPIC instruments onboard XMM-Newton. Archival BeppoSAX PDS data from 18-120 keV were also used to constrain the underlying hard power-law continuum. The results from our spectral analyses generally favor a double partial-covering model, although other spectral models such as absorption by a mixture of partially ionized and neutral gas cannot be firmly ruled out. Our best-fitting model consists of a power law with a photon index of 1.81+/-0.20 and partial covering with large column densities up to 10^{23} cm**-2. We also detect a narrow emission line consistent with Fe Kalpha fluorescence at 6.45+/-0.04 keV with an equivalent width of ~93+/-25 eV. Joint analyses of XMM-Newton, ASCA, and BeppoSAX data further provide evidence for both spectral variability (a factor of ~2 change in absorbing column) and absorption-corrected flux variations (by ~60%) during the ~4 year period probed by the observations.Comment: 7 pages, 2 figures. accepted for publication in the Astronomical Journa

    Superradiance from an ultrathin film of three-level V-type atoms: Interplay between splitting, quantum coherence and local-field effects

    Get PDF
    We carry out a theoretical study of the collective spontaneous emission (superradiance) from an ultrathin film comprised of three-level atoms with VV-configuration of the operating transitions. As the thickness of the system is small compared to the emission wavelength inside the film, the local-field correction to the averaged Maxwell field is relevant. We show that the interplay between the low-frequency quantum coherence within the subspace of the upper doublet states and the local-field correction may drastically affect the branching ratio of the operating transitions. This effect may be used for controlling the emission process by varying the doublet splitting and the amount of low-frequency coherence.Comment: 15 pages, 5 figure

    STIS Echelle Observations of the Seyfert Galaxy NGC 4151: Physical Conditions in the Ultraviolet Absorbers

    Get PDF
    We have examined the physical conditions in intrinsic UV-absorbing gas in the Seyfert galaxy NGC 4151, using echelle spectra obtained with the Space Telescope Imaging Spectrograph (STIS). We confirm the presence of the kinematic components detected in earlier GHRS observations as well as a new broad absorption feature at a radial velocity of -1680 km/s. The UV continuum of NGC 4151 decreased by a factor of 4 over the previous two years, and we argue the changes in the column density of the low ionization absorption lines associated with the broad component at -490 km/s reflect the decrease in the ionizing flux. Most of the strong absorption lines (e.g., N V, C IV, Si IV) from this component are saturated, but show substantial residual flux in their cores, indicating that the absorber does not fully cover the source of emission. Our interpretation is that the unocculted light is due to scattering by free electrons from an extended region, which reflects continuum, emission lines, and absorption lines. We have been able to constrain the densities for the kinematic components based on absorption lines from metastable states of C III and Fe II, and/or the ratios of ground and fine structure lines of O I,C II, and Si II. We have generated a set of photoionization models which match the ionic column densities for each component during the present low flux state and those seen in previous high flux states with the GHRS and STIS, confirming that the absorbers are photoionized and respond to the changes in the continuum flux. We have been able to map the relative radial positions of the absorbers, and find that the gas decreases in density with distance. None of the UV absorbers is of sufficiently large column density or high enough ionization state to account for the X-ray absorption.Comment: 46 pages (Latex), 14 figures (postscript), plus a landscape table (Latex), to appear in the Astrophysical Journa

    Simultaneous Ultraviolet and X-ray Observations of the Seyfert Galaxy NGC 4151. I. Physical Conditions in the X-ray Absorbers

    Full text link
    We present a detailed analysis of the intrinsic X-ray absorption in the Seyfert 1 galaxy NGC 4151 using Chandra/HETGS data obtained 2002 May, as part of a program which included simultaneous UV spectra using HST/STIS and FUSE. NGC 4151 was in a relatively low flux state during the observations reported here, although roughly 2.5 times as bright in the 2 --10 keV band as during a Chandra observation in 2000. The soft X-ray band was dominated by emission lines, which show no discernible variation in flux between the two observations. The 2002 data show the presence of a very highly ionized absorber, in the form of H-like and He-like Mg, Si, and S lines, as well as lower ionization gas via the presence of inner-shell absorption lines from lower-ionization species of these elements. The former is too highly ionized to be radiatively accelerated in a sub-Eddington source such as NGC 4151. We find that the lower ionization gas had a column density a factor of ~ 3 higher during the 2000 observation. If due to bulk motion, we estimate that this component must have a velocity of more than 1250 km/sec transverse to our line-of-sight. We suggest that these results are consistent with a magneto-hydrodynamic flow.Comment: 42 pages, 14 figures. Accepted for publication in The Astrophysical Journa

    Variable UV Absorption in the Seyfert 1.5 Galaxy NGC 3516: The Case for Associated UV and X-ray Absorption

    Full text link
    We present observations of the UV absorption lines in the Seyfert 1 galaxy NGC 3516, obtained at a resolution of λ\lambda/Δλ\Delta\lambda ≈\approx 40,000 with the Space Telescope Imaging Spectrograph (STIS) on 2000 October 1. The UV continuum was ∌\sim4 times lower than that observed during 1995 with the Goddard High Resolution Spectrograph (GHRS), and the X-ray flux from a contemporaneous {\it Chandra X-ray Observatory (CXO)} observation was a factor of ∌\sim8 below that observed with {\it ASCA}. The STIS spectra show kinematic components of absorption in Lyα\alpha, C IV, and N V at radial velocities of -376, -183, and -36 km s−1^{-1} (components 1, 2, and 3+4, respectively), which were detected in the earlier GHRS spectra; the last of these is a blend of two GHRS components that have increased greatly in column density. Four additional absorption components have appeared in the STIS spectra at radial velocities of -692, -837, -994, and -1372 km s−1^{-1} (components 5 through 8); these may also have been present in earlier low-flux states observed by the {\it International Ultraviolet Explorer (IUE)}. Based on photoionization models, we suggest that the components are arranged in increasing radial distance in the order, 3+4, 2, 1, followed by components 5 -- 8. We have achieved an acceptable fit to the X-ray data using the combined X-ray opacity of the UV components 1, 2 and 3+4. By increasing the UV and X-ray fluxes of these models to match the previous high states, we are able to match the GHRS C IV column densities, absence of detectable C IV absorption in components 5 through 8, and the 1994 {\it ASCA} spectrum. We conclude that variability of the UV and X-ray absorption in NGC 3516 is primarily due to changes in the ionizing flux.Comment: 7 figures (note that Fig6 is not referenced in the .Tex file and must be printed separately). There are 6 tables in the .tex file and an additional 8 tables included as separate .ps files. Accepted for Publication in the Astrophysical Journa

    Simultaneous Ultraviolet and X-ray Observations of the Seyfert Galaxy NGC 4151. II. Physical Conditions in the UV Absorbers

    Get PDF
    We present a detailed analysis of the intrinsic absorption in the Seyfert 1 galaxy NGC 4151 using UV spectra from the HST/STIS and FUSE, obtained 2002 May as part of a set of contemporaneous observations that included Chandra/HETGS spectra. In our analysis of the Chandra spectra, we determined that the soft X-ray absorber was the source of the saturated UV lines of O VI, C IV, and N V associated with the absorption feature at a radial velocity of ~ -500 km/sec, which we referred to as component D+E. In the present work, we have derived tighter constrains on the the line-of-sight covering factors, densities, and radial distances of the absorbers. We find that the Equivalent Widths (EWs) of the low-ionization lines associated with D+E varied over the period from 1999 July to 2002 May. The drop in the EWs of these lines between 2001 April and 2002 May are suggestive of bulk motion of gas out of our line-of-sight. If these lines from these two epochs arose in the same sub-component, the transverse velocity of the gas is ~ 2100 km/sec. Transverse velocities of this order are consistent with an origin in a rotating disk, at the roughly radial distance we derived for D+E.Comment: 51 pages, including 12 figures. Accepted for publication in ApJ Supplement

    HST Observations and Photoionization Modeling of the LINER Galaxy NGC 1052

    Get PDF
    We present a study of available Hubble Space Telescope (HST) spectroscopic and imaging observations of the low ionization nuclear emission line region (LINER) galaxy NGC 1052. The WFPC2 imagery clearly differentiates extended nebular Halpha emission from that of the compact core. Faint Object Spectrograph (FOS) observations provide a full set of optical and UV data (1200-6800 Angstroms). These spectral data sample the innermost region (0."86 x 0."86 ~ 82pc x 82pc) and exclude the extended Halpha emission seen in the WFPC2 image. The derived emission line fluxes allow a detailed analysis of the physical conditions within the nucleus. The measured flux ratio for Halpha/Hbeta, F{Halpha}/F{Hbeta}=4.53, indicates substantial intrinsic reddening, E(B-V)=0.42, for the nuclear nebular emission. This is the first finding of a large extinction of the nuclear emission line fluxes in NGC 1052. If the central ionizing continuum is assumed to be attenuated by a comparable amount, then the emission line fluxes can be reproduced well by a simple photoionization model using a central power law continuum source with a spectral index of alpha = -1.2 as deduced from the observed flux distribution. A multi-density, dusty gas gives the best fit to the observed emission line spectrum. Our calculations show that the small contribution from a highly ionized gas observed in NGC 1052 can also be reproduced solely by photoionization modeling. The high gas covering factor determined from our model is consistent with the assumption that our line of sight to the central engine is obscured.Comment: 23 pages, 7 Postscript figures, 1 jpeg figure ; uses aaspp4.sty, 11pt to appear in The Astrophysical Journa

    On The Reddening in X-ray Absorbed Seyfert 1 Galaxies

    Get PDF
    There are several Seyfert galaxies for which there is a discrepancy between the small column of neutral hydrogen deduced from X-ray observations and the much greater column derived from the reddening of the optical/UV emission lines and continuum. The standard paradigm has the dust within the highly ionized gas which produces O~VII and O~VIII absorption edges (i.e., a ``dusty warm absorber''). We present an alternative model in which the dust exists in a component of gas in which hydrogen has been stripped, but which is at too low an ionization state to possess significant columns of O~VII and O~VIII (i.e, a ``lukewarm absorber''). The lukewarm absorber is at sufficient radial distance to encompass much of the narrow emission-line region, and thus accounts for the narrow-line reddening, unlike the dusty warm absorber. We test the model by using a combination of photoionization models and absorption edge fits to analyze the combined ROSAT/ASCA dataset for the Seyfert 1.5 galaxy, NGC 3227. We show that the data are well fit by a combination of the lukewarm absorber and a more highly ionized component similar to that suggested in earlier studies. We predict that the lukewarm absorber will produce strong UV absorption lines of N V, C IV, Si IV and Mg II. Finally, these results illustrate that singly ionized helium is an important, and often overlooked, source of opacity in the soft X-ray band (100 - 500 eV).Comment: 17 pages, Latex, includes 1 figure (encapsulated postscript), one additional table in Latex (landscape format), to appear in the Astrophysical Journa

    Chandra Grating Spectroscopy of the Seyfert Galaxy Ton S180

    Get PDF
    This paper presents results from spectral observations of Ton S180 using Chandra and ASCA. The data confirm the presence of the soft excess but the Chandra LETG spectrum reveals it to be broad and smooth, rather than resolved into individual emission lines. This excess may represent either a primary or reprocessed continuum component or a blend of broad lines from an ionized accretion disk. The occurrence of a similar feature in five other NLSy1s leads us to conclude that this soft X-ray component may be a characteristic of sources accreting at a very high rate. The X-ray spectrum shows no evidence for absorption lines, indicating that if gas exists in the line-of-sight then it is in a very high ionization-state or has an extremely broad velocity distribution. The new ASCA data confirm that the narrow component of the Fe Kalpha line peaks close to a rest-energy of 7 keV, indicating the presence of a significant amount of highly-ionized material in the nuclear environs.Comment: 12 pages, 2 figures. LaTeX with postscript figures. Accepted for publication in the Astrophysical Journal Letter
    • 

    corecore