683 research outputs found

    Possible role of extracellularly released phagocytic proteinases in the coagulation disorder during liver transplantation

    Get PDF
    Orthotopic liver transplantation is frequently associated with a complex coagulation disorder, influencing the outcome of the procedure. In this respect, disseminated intravascular coagulation (DIC) had been suggested to be of causative importance for bleeding complications after reperfusion of the liver graft. In 10 consecutive patients undergoing orthotopic liver transplantations, we studied the occurrence of two phagocyte proteinases of different origin in the graft liver perfus-ate and in systemic blood during the operation, as well as their effects on hemostasis. As compared with plasma samples taken at the end of the anhepatic phase, highly significant increases of cathepsin B and thrombin-anti-thrombin III complexes (TAT), as well as highly significant decreases in antithrombin III, protein C, and C1-inhibitor were observed in graft liver perfusate. Von Willebrand factor and fibrinogen were slightly decreased, whereas the elastase-alpha1 proteinase inhibitor complexes (EPI) were elevated. In plasma the activity of cathepsin B remained unchanged during the prereperfusion phases, but immediately after revascularization of the graft this cysteine proteinase increased. The EPI showed a gradual increase in plasma during the preanhepatic and anhepatic phases but a more pronounced increase in the reperfusion phase. In parallel with the rise in these two proteinases TAT increased and the activities of antithrombin III and C1-inhibitor in plasma decreased after reperfusion. At 12 hr after revascularization plasma levels of TAT, antithrombin III, and C1-inhibitor had returned to the prereperfusion ranges, whereas cathepsin B and EPI were significantly above the baseline levels. These observations are consistent with the hypothesis that extracellularly released lysosomal proteinases may play a role in the development of a DIC-like constellation, including thrombin formation after revascularization of the liver graft. For the first time we could prove the occurrence of phagocyte proteinases in graft liver perfusate and evaluate the importance of these proteinases for the understanding of the pathophysiology leading to bleeding complications in patients undergoing orthotopic liver transplantation

    Mediators of leukocyte yctivation play a role in disseminated intravascular coagulation during orthotopic liver transplantation

    Get PDF
    Leukocytes play an important role in the development of disseminated intravascular coagulation (DIC). In the reperfusion phase of OLT a DIC-like situation has been described and has been held responsible for the high blood loss during this phase. We investigated the role of leukocytes in the pathogenesis of DIC in OLT by measuring the leukocytic mediators released upon activation (cathepsin B, elastase, TNF, neopterin) and the levels of thrombin-antithrombin III (TAT) complexes, seen as markers of prothrombin activation. Arterial blood samples were taken at 10 different time points during and after OLT. Samples were also taken of the perfusate released from the liver graft vein during the flushing procedure before the reperfusion phase. Aprotinin was given as a continuous infusion (0.2-0.4 Mill. KlU/hr) and its plasma levels were determined. Significantly elevated levels of neopterin (15-fold; P<0.01), cathepsin B (440-fold; P<0.01) in the perfusate, as compared with the systemic circulation, as well as their significant increases in the early reperfusion phase suggested that they were released by the graft liver. This was paralleled by elevated levels of elastase (1.3-fold, P<0.05), TNF (1.5-fold, P=NS), and TAT complexes (1.4-fold; P<0.1) in the perfusate. Significant correlations could be identified between the parameters of leukocyte activation and TAT complexes, whereas no correlation was observed between any of the parameters investigated and the aprotinin levels. Our results strongly indicate a release of leukocytic mediators from the graft liver during its reperfusion which seems to be related to the parallely increased prothrombin activation. No correlation could be seen between levels of aprotinin and levels of leukocytic mediators

    Different aprotinin applications influencing hemostatic chances in orthotopic liver transplantation

    Get PDF
    The effect of different aprotinin applications on hemmtatic changes and blood product requirements in orthotopic liver transplantation was investigated in a prospective, open, and randomized study. From November 1989 to June 1990, 13 patients received aprotinin as a bolus of 0.5 Mill, kallikrein inac-tivator units (KIU) on three occasions in the course of an OLT, whereas 10 other patients were treated with continuous aprotinin infusion of 0.1-0.4 Mill. KIU/hr. Before and after reperfusion of the graft liver, signs of hyperfibrinolysis, measured by thrombelastography, were significantly lower in the infusion group. Tissue-type plasminogen activator (t-PA) activity increased during the anhepatic phase but to a significantly lesser extent in the infusion group. Blood product requirements during OLT were tendentiously higher in the bolus group but not significantly so. However, the use of packed red blood cells was significantly lower in the postoperative period, whereas there was no significant difference in fresh frozen plasma requirements between the two groups. All 23 patients have survived, and only one woman of each group required retransplantation due to severe host-versus-graft reactions. Furthermore, we investigated the perfusate of the graft liver in both groups and detected signs of a decreased t-PA release in the infusion group. Our results demonstrate an advantage of aprotinin given as continuous infusion over bolus application in OLT

    Rapid Etiological Classification of Meningitis by NMR Spectroscopy Based on Metabolite Profiles and Host Response

    Get PDF
    Bacterial meningitis is an acute disease with high mortality that is reduced by early treatment. Identification of the causative microorganism by culture is sensitive but slow. Large volumes of cerebrospinal fluid (CSF) are required to maximise sensitivity and establish a provisional diagnosis. We have utilised nuclear magnetic resonance (NMR) spectroscopy to rapidly characterise the biochemical profile of CSF from normal rats and animals with pneumococcal or cryptococcal meningitis. Use of a miniaturised capillary NMR system overcame limitations caused by small CSF volumes and low metabolite concentrations. The analysis of the complex NMR spectroscopic data by a supervised statistical classification strategy included major, minor and unidentified metabolites. Reproducible spectral profiles were generated within less than three minutes, and revealed differences in the relative amounts of glucose, lactate, citrate, amino acid residues, acetate and polyols in the three groups. Contributions from microbial metabolism and inflammatory cells were evident. The computerised statistical classification strategy is based on both major metabolites and minor, partially unidentified metabolites. This data analysis proved highly specific for diagnosis (100% specificity in the final validation set), provided those with visible blood contamination were excluded from analysis; 6-8% of samples were classified as indeterminate. This proof of principle study suggests that a rapid etiologic diagnosis of meningitis is possible without prior culture. The method can be fully automated and avoids delays due to processing and selective identification of specific pathogens that are inherent in DNA-based techniques
    corecore