2,410 research outputs found

    Spin-Spin Interaction In Matrix Theory

    Get PDF
    We calculate the spin dependent static force between two D0-branes in Matrix theory. Supersymmetry relates velocity dependent potentials to spin dependent potentials. The well known v^4/r^7 term is related to a theta^8/r^11 term, where theta is the relative spin of the D0-branes. We calculate this term, confirming that it is the lowest order contribution to the static potential, and find its structure consistent with supergravity.Comment: 15 pages, LaTeX, uses feynmf.sty for diagrams. Reference added and some labels on the diagrams restore

    Modelling the local and global cloud formation on HD 189733b

    Get PDF
    Context. Observations suggest that exoplanets such as HD 189733b form clouds in their atmospheres which have a strong feedback onto their thermodynamical and chemical structure, and overall appearance. Aims. Inspired by mineral cloud modelling efforts for Brown Dwarf atmospheres, we present the first spatially varying kinetic cloud model structures for HD 189733b. Methods. We apply a 2-model approach using results from a 3D global radiation-hydrodynamic simulation of the atmosphere as input for a detailed, kinetic cloud formation model. Sampling the 3D global atmosphere structure with 1D trajectories allows us to model the spatially varying cloud structure on HD 189733b. The resulting cloud properties enable the calculation of the scattering and absorption properties of the clouds. Results. We present local and global cloud structure and property maps for HD 189733b. The calculated cloud properties show variations in composition, size and number density of cloud particles which are strongest between the dayside and nightside. Cloud particles are mainly composed of a mix of materials with silicates being the main component. Cloud properties, and hence the local gas composition, change dramatically where temperature inversions occur locally. The cloud opacity is dominated by absorption in the upper atmosphere and scattering at higher pressures in the model. The calculated 8{\mu}m single scattering Albedo of the cloud particles are consistent with Spitzer bright regions. The cloud particles scattering properties suggest that they would sparkle/reflect a midnight blue colour at optical wavelengths.Comment: Accepted for publication (A&A) - 21/05/2015 (Low Resolution Maps

    Transferring the Family Farm

    Get PDF
    Family transfer decisions and procedures are often difficult and stressful. What is “fair and equitable” from one person’s perspective can be “unfair and inequitable” from someone else’s perspective. The farm is perhaps the most difficult of all family resources to pass down. After all, it represents both an economic enterprise and a way of living. The challenges can only be addressed if various aspects of the transfer process are carefully considered

    Exploring terrestrial lightning parameterisations for exoplanets and brown dwarfs

    Get PDF
    We highlight financial support of the European Community under the FP7 by an ERC starting grant number 257431. Ch. H. acknowledges funding from the European Union H2020-MSCA-ITN-2019 under Grant Agreement no. 860470 (CHAMELEON).Observations and models suggest that the conditions to develop lightning may be present in cloud-forming extrasolar planetary and brown dwarf atmospheres. Whether lightning on these objects is similar to or very different from what is known from the Solar System awaits answering as lightning from extrasolar objects has not been detected yet. We explore terrestrial lightning parameterisations to compare the energy radiated and the total radio power emitted from lightning discharges for Earth, Jupiter, Saturn, extrasolar giant gas planets and brown dwarfs. We find that lightning on hot, giant gas planets and brown dwarfs may have energies of the order of 1011–1017 ​J, which is two to eight orders of magnitude larger than the average total energy of Earth lightning (109 ​J), and up to five orders of magnitude more energetic than lightning on Jupiter or Saturn (1012 ​J), affirming the stark difference between these atmospheres. Lightning on exoplanets and brown dwarfs may be more energetic and release more radio power than what has been observed from the Solar System. Such energies would increase the probability of detecting lightning-related radio emission from an extrasolar body.PostprintPeer reviewe

    Self-consistent atmosphere modeling with cloud formation for low-mass stars and exoplanets

    Get PDF
    ChH highlight financial support of the European Community under the FP7 by the ERC starting grant 257431.Context.  Low-mass stars and extrasolar planets have ultra-cool atmospheres where a rich chemistry occurs and clouds form. The increasing amount of spectroscopic observations for extrasolar planets requires self-consistent model atmosphere simulations to consistently include the formation processes that determine cloud formation and their feedback onto the atmosphere. Aims.  Our aim is to complement the Marcs model atmosphere suit with simulations applicable to low-mass stars and exoplanets in preparation of E-ELT, JWST, PLATO and other upcoming facilities. Methods.  The Marcs code calculates stellar atmosphere models, providing self-consistent solutions of the radiative transfer and the atmospheric structure and chemistry. We combine Marcs with a kinetic model that describes cloud formation in ultra-cool atmospheres (seed formation, growth/evaporation, gravitational settling, convective mixing, element depletion). Results. We present a small grid of self-consistently calculated atmosphere models for Teff = 2000-3000 K with solar initial abundances and log(g) = 4:5. Cloud formation in stellar and sub-stellar atmospheres appears for Teff < 2700 K and has a significant effect on the structure and the spectrum of the atmosphere for Teff < 2400 K. We have compared the synthetic spectra of our models with observed spectra and found that they fit the spectra of mid-To late-Type M-dwarfs and early-Type L-dwarfs well. The geometrical extension of the atmospheres (at τ = 1) changes with wavelength resulting in a flux variation of ∼ 10%. This translates into a change in geometrical extension of the atmosphere of about 50 km, which is the quantitative basis for exoplanetary transit spectroscopy.We also test Drift-Marcs for an example exoplanet and demonstrate that our simulations reproduce the Spitzer observations for WASP-19b rather well for Teff = 2600 K, log(g) = 3:2 and solar abundances. Our model points at an exoplanet with a deep cloud-free atmosphere with a substantial day-night energy transport and no temperature inversion.PostprintPeer reviewe

    Dust in brown dwarfs and extra-solar planets IV. Assessing TiO2 and SiO nucleation for cloud formation modeling

    Get PDF
    Clouds form in atmospheres of brown dwarfs and planets. The cloud particle formation processes are similar to the dust formation process studied in circumstellar shells of AGB stars and in Supernovae. Cloud formation modelling in substellar objects requires gravitational settling and element replenishment in addition to element depletion. All processes depend on the local conditions, and a simultaneous treatment is required. We apply new material data in order to assess our cloud formation model results regarding the treatment of the formation of condensation seeds. We re-address the question of the primary nucleation species in view of new (TiO2)_N-cluster data and new SiO vapour pressure data. We apply the density functional theory using the computational chemistry package Gaussian 09 to derive updated thermodynamical data for (TiO2)_N-clusters as input for our TiO2 seed formation model. We test different nucleation treatments and their effect on the overall cloud structure by solving a system of dust moment equations and element conservation or a pre-scribed Drift-Phoenix atmosphere structure. Updated Gibbs free energies for the (TiO2)_N-clusters are presented, and a slightly temperature dependent surface tension for T=500 ... 2000K with an average value of sigma_infty = 480.6 erg 1/cm2. The TiO2-seed formation rate changes only slightly with the updated cluster data. A considerably larger effect on the rate of seed formation, and hence on grain size and dust number density, results from a switch to SiO-nucleation. Despite the higher abundance of SiO over TiO2 in the gas phase, TiO2 remains considerably more efficient in forming condensation seeds by homogeneous nucleation followed by heterogeneous grain growth. The paper discussed the effect on the cloud structure in more detail.Comment: accepted for publication in A&A (abstract abridged

    Ionisation and discharge in cloud-forming atmospheres of brown dwarfs and extrasolar planets

    Get PDF
    Brown dwarfs and giant gas extrasolar planets have cold atmospheres with rich chemical compositions from which mineral cloud particles form. Their properties, like particle sizes and material composition, vary with height, and the mineral cloud particles are charged due to triboelectric processes in such dynamic atmospheres. The dynamics of the atmospheric gas is driven by the irradiating host star and/or by the rotation of the objects that changes during its lifetime. Thermal gas ionisation in these ultra-cool but dense atmospheres allows electrostatic interactions and magnetic coupling of a substantial atmosphere volume. Combined with a strong magnetic field , a chromosphere and aurorae might form as suggested by radio and x-ray observations of brown dwarfs. Non-equilibrium processes like cosmic ray ionisation and discharge processes in clouds will increase the local pool of free electrons in the gas. Cosmic rays and lighting discharges also alter the composition of the local atmospheric gas such that tracer molecules might be identified. Cosmic rays affect the atmosphere through air showers in a certain volume which was modelled with a 3D Monte Carlo radiative transfer code to be able to visualise their spacial extent. Given a certain degree of thermal ionisation of the atmospheric gas, we suggest that electron attachment to charge mineral cloud particles is too inefficient to cause an electrostatic disruption of the cloud particles. Cloud particles will therefore not be destroyed by Coulomb explosion for the local temperature in the collisional dominated brown dwarf and giant gas planet atmospheres. However, the cloud particles are destroyed electrostatically in regions with strong gas ionisation. The potential size of such cloud holes would, however, be too small and might occur too far inside the cloud to mimic the effect of, e.g. magnetic field induced star spots

    Complexity of links in 3-manifolds

    Full text link
    We introduce a natural-valued complexity c(X) for pairs X=(M,L), where M is a closed orientable 3-manifold and L is a link contained in M. The definition employs simple spines, but for well-behaved X's we show that c(X) equals the minimal number of tetrahedra in a triangulation of M containing L in its 1-skeleton. Slightly adapting Matveev's recent theory of roots for graphs, we carefully analyze the behaviour of c under connected sum away from and along the link. We show in particular that c is almost always additive, describing in detail the circumstances under which it is not. To do so we introduce a certain (0,2)-root for a pair X, we show that it is well-defined, and we prove that X has the same complexity as its (0,2)-root. We then consider, for links in the 3-sphere, the relations of c with the crossing number and with the hyperbolic volume of the exterior, establishing various upper and lower bounds. We also specialize our analysis to certain infinite families of links, providing rather accurate asymptotic estimates.Comment: 24 pages, 6 figure

    Intergenerational Continuity of the Family Farm: Influence of Parental Aspirations and Expectations for Their Children

    Get PDF
    The decline in the number of young people entering the farming occupation was investigated. Specifically, whether parents are encouraging their children to farm, and the links between encouragement and parental experience on the farm were explored. In-depth interviews with adult junior members of farming families were conducted regarding their experiences with farming, their attitudes about farming, and their goals for their own children. Results give preliminary support for the hypothesis that parental aspirations and expectations for their children are linked to parents\u27 experiences and attitudes towards farming

    Hamiltonian and physical Hilbert space in polymer quantum mechanics

    Get PDF
    In this paper, a version of polymer quantum mechanics, which is inspired by loop quantum gravity, is considered and shown to be equivalent, in a precise sense, to the standard, experimentally tested, Schroedinger quantum mechanics. The kinematical cornerstone of our framework is the so called polymer representation of the Heisenberg-Weyl (H-W) algebra, which is the starting point of the construction. The dynamics is constructed as a continuum limit of effective theories characterized by a scale, and requires a renormalization of the inner product. The result is a physical Hilbert space in which the continuum Hamiltonian can be represented and that is unitarily equivalent to the Schroedinger representation of quantum mechanics. As a concrete implementation of our formalism, the simple harmonic oscillator is fully developed.Comment: 19 pages, 2 figures. Comments and references added. Version to be published in CQ
    corecore