412 research outputs found

    Observations of fronts in the North Sea

    Get PDF
    The persistent presence of a cold bottom layer and associated bottom fronts was observed in the stratified central North Sea during an observational program in 1981 and 1982. Moored instruments, capturing a snap-shot of such a front while it was advected past these moorings, revealed the simultaneous presence of a well-defined frontal jet with velocities up to 15 cm s−1. The Coriolis force acting on this jet appeared to be in geostrophic balance with the locally intense pressure gradient forces. Hydrographic surveys revealed the presence of both small-scale and large-scale baroclinic waves on this front, the latter reaching wavelengths of 5–10 internal Ross by radii. Some evidence for a weak secondary circulation in the cross-frontal plane was obtained from the observed deformation of isolines near the front

    The Okubo-Weiss Criteria in Two-Dimensional Hydrodynamic and Magnetohydrodynamic Flows

    Full text link
    The Okubo [2]-Weiss [3] criterion is recast by using the 2D hydrodynamic Beltrami condition (Shivamoggi et al.[13]) that approximates the slow flow-variation ansatz imposed in its derivation. This turns out to provide an interesting interpretation of the Okubo-Weiss criterion very logically in terms of the topological properties of the underlying vorticity manifold. These developments are then extended to 2D quasi-geostrophic flows (via the potential divorticity framework), magnetohydrodynamic flows and electron magnetohydrodynamic flows (via the generalized magnetic flux framework) and the Okubo-Weiss criteria for these cases are considered.Comment: 13 page

    Laboratory experiments on multipolar vortices in a rotating fluid

    Get PDF
    The instability properties of isolated monopolar vortices have been investigated experimentally and the corresponding multipolar quasisteady states have been compared with semianalytical vorticity-distributed solutions to the Euler equations in two dimensions. A novel experimental technique was introduced to generate unstable monopolar vortices whose nonlinear evolution resulted in the formation of multipolar vortices. Dye-visualization and particle imaging techniques revealed the existence of tripolar, quadrupolar, and pentapolar vortices. Also evidence was found of the onset of hexapolar and heptapolar vortices. The observed multipolar vortices were found to be unstable and generally broke up into multipolar vortices of lesser complexity. The characteristic flow properties of the quadrupolar vortex were in close agreement with the semianalytical model solutions. Higher-order multipolar vortices were observed to be susceptible to strong inertial oscillations. © 2010 American Institute of Physic

    On anomalous diffusion in a plasma in velocity space

    Get PDF
    The problem of anomalous diffusion in momentum space is considered for plasma-like systems on the basis of a new collision integral, which is appropriate for consideration of the probability transition function (PTF) with long tails in momentum space. The generalized Fokker-Planck equation for description of diffusion (in momentum space) of particles (ions, grains etc.) in a stochastic system of light particles (electrons, or electrons and ions, respectively) is applied to the evolution of the momentum particle distribution in a plasma. In a plasma the developed approach is also applicable to the diffusion of particles with an arbitrary mass relation, due to the small characteristic momentum transfer. The cases of an exponentially decreasing in momentum space (including the Boltzmann-like) kernel in the PT-function, as well as the more general kernels, which create the anomalous diffusion in velocity space due to the long tail in the PT-function, are considered. Effective friction and diffusion coefficients for plasma-like systems are found.Comment: 18 pages, no figure

    Dynamics and structure of decaying shallow dipolar vortices

    Get PDF
    The current work reports on a numerical and experimental study of the evolution of decaying dipolar vortices in a shallow fluid layer. The dynamics and the structure of such vortices are investigated as a function of both their Reynolds number Re and the aspect ratio of vertical and horizontal length scales δ. By quantifying the strength of the secondary motions (vertical motions and nonzero horizontal divergence) with respect to the swirling motions of the primary vortex cores, it was found that the three-dimensionality of a shallow (δ << 1) dipolar vortex only depends on a single parameter: δ²Re. Depending on the value of this parameter, three flow regimes are observed for shallow dipolar vortices: (1) a quasi-two-dimensional regime where the structure of the dipolar vortex remains almost unchanged throughout its lifetime, (2) a transitional regime where the structure presents some three-dimensional characteristics but remains coherent, and (3) a three-dimensional regime where the structure of the dipolar vortex acquires a complicated three-dimensional shape with a persistent spanwise vortex at its front

    The break-up of Ekman theory in a flow subjected to background rotation and driven by a non-conservative body force

    Get PDF
    We present an experimental/numerical study of a dipolar flow structure in a shallow layer of electrolyte driven by electromagnetic forcing and subjected to background rotation. The aim of this study is to determine the influence of a non-conservative body force on the range of applicability of the classical Ekman boundary layer theory in rapidly rotating systems. To address this question, we study the response of the flow to the three control parameters: the magnitude of the forcing, the rotation rate of the system, and the shallowness of the layer. This response is quantified taking into account the magnitude of the flow velocity (represented by the Reynolds number), the symmetry between both vortex cores, and the vertical profile of the horizontal velocity. As in the case without background rotation, the response of the flow exhibits two scaling regimes (a linear and a nonlinear regime) in which the flow exhibits different vertical profiles of velocity. The transition between the two regimes occurs when the convective acceleration becomes of the same order as the viscous damping. This suggests that the applicability of the Ekman theory depends on the existence of a balance between the forcing and the damping due to the Ekman layers and does not depend solely on the value of the Rossby number as for decaying flows. On the other hand, the cyclone/anticyclone asymmetry is governed exclusively by the Rossby number. (C) 2012 American Institute of Physics. [http://dx.doi.org/10.1063/1.4766818
    • …
    corecore