20 research outputs found

    STM Studies of HCI-induced Surface Damage on Highly Oriented Pyrolytic Graphite

    No full text

    Observation of a threshold in potential sputtering of LiF surfaces

    No full text
    A quartz-crystal microbalance technique is used for measuring total sputtering yields for LiF under impact of slow (20 eV, 100 eV, 500 eV and 1000 eV kinetic energy) singly and doubly charged ions. At low kinetic energies (less than or equal to 100 eV) potential sputtering (PS) (i.e., sputtering due to the projectiles potential energy) clearly dominates over kinetically induced sputtering. New insight into the mechanisms for PS is gained by determining the minimum potential energy necessary to induce PS. The measured potential energy threshold at around 10 eV provides evidence that PS can already be induced by the production of cold holes in the valence band of LiF via resonant neutralisation. (C) 2000 Elsevier Science B.V. All rights reserved

    Curve-crossing analysis for potential sputtering of insulators

    No full text
    We develop a theoretical model for the recently observed threshold for potential sputtering of LiF by slow singly and doubly charged ions. The threshold coincides with the potential energy to create a cold hole in the valence band of LiF by resonant neutralization. We calculate the level shift of the incident ion and the deformation of the valence band under the influence of the projectile. Resonant neutralization becomes possible for ions with recombination energies larger than 10 eV in agreement with the experimental findings. (C) 2000 Elsevier Science B.V. All rights reserved

    Threshold for potential sputtering of LiF

    Get PDF
    We have measured total sputtering yields for impact of slow (less than or equal to 100 eV) singly and doubly charged ions on LiF. The minimum potential energy necessary to induce potential sputtering (PS) from UF was determined to be about 10 eV. This threshold coincides with the energy necessary to produce a cold hole in the valence band of LiF by resonant neutralization. This allows the first unambiguous identification of PS induced by cold holes. Further stepwise increase of the sputtering yield with higher projectile potential energies provides evidence for additional defect-mediated sputtering mechanisms operative in alkali halides

    Kinetically assisted potential sputtering of insulators by highly charged ions

    Get PDF
    A new form of potential sputtering has been found for impact of slow (less than or equal to 1500 eV) multiply charged Xe ions (charge states up to q = 25) on MgOx. In contrast to alkali-halide or SiO2 surfaces this mechanism requires the simultaneous presence of electronic excitation of the target material and of a kinetically formed collision cascade within the target in order to initiate the sputtering process. This kinetically assisted potential sputtering mechanism has been identified to be present for ether insulating surfaces as well
    corecore