289 research outputs found

    Tin whisker mitigation by means of a postelectroplating electrochemical oxidation treatment

    Get PDF
    There are very few studies that have investigated directly the effect of an oxide film on tin whisker growth, since the ‘cracked oxide theory’ was proposed by Tu in 19941. The current study has investigated the effect of an electrochemically produced oxide on tin whisker growth, for both Sn-Cu electrodeposits on Cu and pure Sn electrodeposits on brass. X-ray photoelectron spectroscopy (XPS) has been used to investigate the effect of the applied electrochemical oxidation potential on the oxide film thickness. Focused ion beam (FIB) has been used to prepare cross sections from electrodeposited samples to investigate the influence of the electrochemically formed oxide film on deposit microstructure during long-term room temperature storage. The XPS studies show that the thickness of electrochemically formed oxide film is directly influenced by the applied potential and the total charge passed. Whisker growth studies show that the electrochemical oxidation treatment mitigates whisker growth for both Sn-Cu electrodeposits on Cu and pure Sn electrodeposits on brass. For Sn electrodeposits on brass, the electrochemically formed oxide greatly reduces both the formation of zinc oxide at the surface and the formation of intermetallic compounds, which results in the mitigation of tin whisker growth. For Sn-Cu electrodeposits on Cu, the electrochemically formed oxide has no apparent effect on intermetallic compound formation and acts simply as a physical barrier to hinder tin whisker growth

    Inhibition Underlies Fast Undulatory Locomotion in Caenorhabditis elegans

    Get PDF
    Inhibition plays important roles in modulating the neural activities of sensory and motor systems at different levels from synapses to brain regions. To achieve coordinated movement, motor systems produce alternating contractions of antagonist muscles, whether along the body axis or within and among limbs, which often involves direct or indirect cross-inhibitory pathways. In the nematode Caenorhabditis elegans, a small network involving excitatory cholinergic and inhibitory GABAergic motoneurons generates the dorsoventral alternation of body-wall muscles that supports undulatory locomotion. Inhibition has been suggested to be necessary for backward undulation because mutants that are defective in GABA transmission exhibit a shrinking phenotype in response to a harsh touch to the head, whereas wild-type animals produce a backward escape response. Here, we demonstrate that the shrinking phenotype is exhibited by wild-type as well as mutant animals in response to harsh touch to the head or tail, but only GABA transmission mutants show slow locomotion after stimulation. Impairment of GABA transmission, either genetically or optogenetically, induces lower undulation frequency and lower translocation speed during crawling and swimming in both directions. The activity patterns of GABAergic motoneurons are different during low-frequency and high-frequency undulation. During low-frequency undulation, GABAergic VD and DD motoneurons show correlated activity patterns, while during high-frequency undulation, their activity alternates. The experimental results suggest at least three non-mutually exclusive roles for inhibition that could underlie fast undulatory locomotion in C. elegans, which we tested with computational models: cross-inhibition or disinhibition of body-wall muscles, or neuronal reset

    A Wasp Manipulates Neuronal Activity in the Sub-Esophageal Ganglion to Decrease the Drive for Walking in Its Cockroach Prey

    Get PDF
    BACKGROUND: The parasitoid Jewel Wasp hunts cockroaches to serve as a live food supply for its offspring. The wasp stings the cockroach in the head and delivers a cocktail of neurotoxins directly inside the prey's cerebral ganglia. Although not paralyzed, the stung cockroach becomes a living yet docile 'zombie', incapable of self-initiating spontaneous or evoked walking. We show here that such neuro-chemical manipulation can be attributed to decreased neuronal activity in a small region of the cockroach cerebral nervous system, the sub-esophageal ganglion (SEG). A decrease in descending permissive inputs from this ganglion to thoracic central pattern generators decreases the propensity for walking-related behaviors. METHODOLOGY AND PRINCIPAL FINDINGS: We have used behavioral, neuro-pharmacological and electrophysiological methods to show that: (1) Surgically removing the cockroach SEG prior to wasp stinging prolongs the duration of the sting 5-fold, suggesting that the wasp actively targets the SEG during the stinging sequence; (2) injecting a sodium channel blocker, procaine, into the SEG of non-stung cockroaches reversibly decreases spontaneous and evoked walking, suggesting that the SEG plays an important role in the up-regulation of locomotion; (3) artificial focal injection of crude milked venom into the SEG of non-stung cockroaches decreases spontaneous and evoked walking, as seen with naturally-stung cockroaches; and (4) spontaneous and evoked neuronal spiking activity in the SEG, recorded with an extracellular bipolar microelectrode, is markedly decreased in stung cockroaches versus non-stung controls. CONCLUSIONS AND SIGNIFICANCE: We have identified the neuronal substrate responsible for the venom-induced manipulation of the cockroach's drive for walking. Our data strongly support previous findings suggesting a critical and permissive role for the SEG in the regulation of locomotion in insects. By injecting a venom cocktail directly into the SEG, the parasitoid Jewel Wasp selectively manipulates the cockroach's motivation to initiate walking without interfering with other non-related behaviors

    Exploitation of Other Social Amoebae by Dictyostelium caveatum

    Get PDF
    Dictyostelium amoebae faced with starvation trigger a developmental program during which many cells aggregate and form fruiting bodies that consist of a ball of spores held aloft by a thin stalk. This developmental strategy is open to several forms of exploitation, including the remarkable case of Dictyostelium caveatum, which, even when it constitutes 1/10(3) of the cells in an aggregate, can inhibit the development of the host and eventually devour it. We show that it accomplishes this feat by inhibiting a region of cells, called the tip, which organizes the development of the aggregate into a fruiting body. We use live-cell microscopy to define the D. caveatum developmental cycle and to show that D. caveatum amoebae have the capacity to ingest amoebae of other Dictyostelid species, but do not attack each other. The block in development induced by D. caveatum does not affect the expression of specific markers of prespore cell or prestalk cell differentiation, but does stop the coordinated cell movement leading to tip formation. The inhibition mechanism involves the constitutive secretion of a small molecule by D. caveatum and is reversible. Four Dictyostelid species were inhibited in their development, while D. caveatum is not inhibited by its own compound(s). D. caveatum has evolved a predation strategy to exploit other members of its genus, including mechanisms of developmental inhibition and specific phagocytosis

    To reverse engineer an entire nervous system

    Full text link
    There are many theories of how behavior may be controlled by neurons. Testing and refining these theories would be greatly facilitated if we could correctly simulate an entire nervous system so we could replicate the brain dynamics in response to any stimuli or contexts. Besides, simulating a nervous system is in itself one of the big dreams in systems neuroscience. However, doing so requires us to identify how each neuron's output depends on its inputs, a process we call reverse engineering. Current efforts at this focus on the mammalian nervous system, but these brains are mind-bogglingly complex, allowing only recordings of tiny subsystems. Here we argue that the time is ripe for systems neuroscience to embark on a concerted effort to reverse engineer a smaller system and that Caenorhabditis elegans is the ideal candidate system as the established optophysiology techniques can capture and control each neuron's activity and scale to hundreds of thousands of experiments. Data across populations and behaviors can be combined because across individuals the nervous system is largely conserved in form and function. Modern machine-learning-based modeling should then enable a simulation of C. elegans' impressive breadth of brain states and behaviors. The ability to reverse engineer an entire nervous system will benefit the design of artificial intelligence systems and all of systems neuroscience, enabling fundamental insights as well as new approaches for investigations of progressively larger nervous systems.Comment: 23 pages, 2 figures, opinion pape

    An Image-Free Opto-Mechanical System for Creating Virtual Environments and Imaging Neuronal Activity in Freely Moving Caenorhabditis elegans

    Get PDF
    Non-invasive recording in untethered animals is arguably the ultimate step in the analysis of neuronal function, but such recordings remain elusive. To address this problem, we devised a system that tracks neuron-sized fluorescent targets in real time. The system can be used to create virtual environments by optogenetic activation of sensory neurons, or to image activity in identified neurons at high magnification. By recording activity in neurons of freely moving C. elegans, we tested the long-standing hypothesis that forward and reverse locomotion are generated by distinct neuronal circuits. Surprisingly, we found motor neurons that are active during both types of locomotion, suggesting a new model of locomotion control in C. elegans. These results emphasize the importance of recording neuronal activity in freely moving animals and significantly expand the potential of imaging techniques by providing a mean to stabilize fluorescent targets

    Training Genetic Counsellors to Deliver an Innovative Therapeutic Intervention: their views and experience of facilitating multi-family discussion groups

    Get PDF
    Innovations in clinical genetics have increased diagnosis, treatment and prognosis of inherited genetic conditions (IGCs). This has led to an increased number of families seeking genetic testing and / or genetic counselling and increased the clinical load for genetic counsellors (GCs). Keeping pace with biomedical discoveries, interventions are required to support families to understand, communicate and cope with their Inherited Genetic Condition. The Socio-Psychological Research in Genomics (SPRinG) collaborative have developed a new intervention, based on multi-family discussion groups (MFDGs), to support families affected by IGCs and train GCs in its delivery. A potential challenge to implementing the intervention was whether GCs were willing and able to undergo the training to deliver the MFDG. In analysing three multi-perspective interviews with GCs, this paper evaluates the training received. Findings suggests that MFDGs are a potential valuable resource in supporting families to communicate genetic risk information and can enhance family function and emotional well-being. Furthermore, we demonstrate that it is feasible to train GCs in the delivery of the intervention and that it has the potential to be integrated into clinical practice. Its longer term implementation into routine clinical practice however relies on changes in both organisation of clinical genetics services and genetic counsellors' professional development

    Formation and Growth of Oligomers: A Monte Carlo Study of an Amyloid Tau Fragment

    Get PDF
    Small oligomers formed early in the process of amyloid fibril formation may be the major toxic species in Alzheimer's disease. We investigate the early stages of amyloid aggregation for the tau fragment AcPHF6 (Ac-VQIVYK-NH2) using an implicit solvent all-atom model and extensive Monte Carlo simulations of 12, 24, and 36 chains. A variety of small metastable aggregates form and dissolve until an aggregate of a critical size and conformation arises. However, the stable oligomers, which are β-sheet-rich and feature many hydrophobic contacts, are not always growth-ready. The simulations indicate instead that these supercritical oligomers spend a lengthy period in equilibrium in which considerable reorganization takes place accompanied by exchange of chains with the solution. Growth competence of the stable oligomers correlates with the alignment of the strands in the β-sheets. The larger aggregates seen in our simulations are all composed of two twisted β-sheets, packed against each other with hydrophobic side chains at the sheet–sheet interface. These β-sandwiches show similarities with the proposed steric zipper structure for PHF6 fibrils but have a mixed parallel/antiparallel β-strand organization as opposed to the parallel organization found in experiments on fibrils. Interestingly, we find that the fraction of parallel β-sheet structure increases with aggregate size. We speculate that the reorganization of the β-sheets into parallel ones is an important rate-limiting step in the formation of PHF6 fibrils

    Characterization of four cell lines persistently infected with measles virus

    Full text link
    Persistently infected cell lines were established by infecting Vero cells with four different strains of measles virus: Edmonston “wild type”, Schwarz vaccine strain passaged at high multiplicity of infection, Hallé SSPE strain, and a temperature sensitive mutant of Edmonston strain, designated ts 841. The four cell lines have continued to produce virus at a constant low level over a period of more than two years, although cytopathology and hemagglutinating ability have varied with cell passage. Only virus from cells originally infected with ts 841 appears to be temperature sensitive. In each of the cell lines a sizable population of low density, interfering virus particles was generated, indicating that this is an important mechanism for these four cell lines in maintenance of the measles virus persistent infection.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/41690/1/705_2005_Article_BF01314863.pd
    corecore