516 research outputs found
Representing addition and subtraction : learning the formal conventions
The study was designed to test the effects of a structured intervention in teaching children to represent addition and subtraction. In a post-test only control group design, 90 five-year-olds experienced the intervention entitled Bi-directional Translation whilst 90 control subjects experienced typical teaching. Post-intervention testing showed some significant differences between the two groups both in terms of being able to effect the addition and subtraction operations and in being able to determine which operation was appropriate. The results suggest that, contrary to historical practices, children's exploration of real world situations should precede practice in arithmetical symbol manipulation
Correlated local distortions of the TlO layers in TlBaCuO: An x-ray absorption study
We have used the XAFS (x-ray-absorption fine structure) technique to
investigate the local structure about the Cu, Ba, and Tl atoms in orthorhombic
Tl-2201 with a superconducting transition temperature T=60 K. Our results
clearly show that the O(1), O(2), Cu, and Ba atoms are at their ideal sites as
given by the diffraction measurements, while the Tl and O(3) atoms are more
disordered than suggested by the average crystal structure. The Tl-Tl distance
at 3.5 \AA{ } between the TlO layers does not change, but the Tl-Tl distance at
3.9 \AA{ } within the TlO layer is not observed and the Tl-Ba and Ba-Tl peaks
are very broad. The shorter Tl-O(3) distance in the TlO layer is about 2.33
\AA, significantly shorter than the distance calculated with both the Tl and
O(3) atoms at their ideal sites ( 0 or ). A model based
on these results shows that the Tl atom is displaced along the
directions from its ideal site by about 0.11 \AA; the displacements of
neighboring Tl atoms are correlated. The O(3) atom is shifted from the $4e$
site by about 0.53 \AA{ } roughly along the directions. A comparison of
the Tl L-edge XAFS spectra from three samples, with T=60 K, 76 K,
and 89 K, shows that the O environment around the Tl atom is sensitive to T
while the Tl local displacement is insensitive to T and the structural
symmetry. These conclusions are compared with other experimental results and
the implications for charge transfer and superconductivity are discussed. This
paper has been submitted to Phys. Rev. B.Comment: 20 pages plus 14 ps figures, REVTEX 3.
Ti-Al composite wires with high specific strength
An alternative deformation technique was applied to a composite made of titanium and an aluminium alloy in order to achieve severe plastic deformation. This involves accumulative swaging and bundling. Furthermore, it allows uniform deformation of a composite material while producing a wire which can be further used easily. Detailed analysis concerning the control of the deformation process, mesostructural and microstructural features and tensile testing was carried out on the as produced wires. A strong grain refinement to a grain size of 250–500 nm accompanied by a decrease in h111i fibre texture component and a change from low angle to high angle grain boundary characteristics is observed in the Al alloy. A strong increase in the mechanical properties in terms of ultimate tensile strength ranging from 600 to 930 MPa being equivalent to a specific strength of up to 223 MPa/g/cm3 was achieved
Theory for Dynamical Short Range Order and Fermi Surface Volume in Strongly Correlated Systems
Using the fluctuation exchange approximation of the one band Hubbard model,
we discuss the origin of the changing Fermi surface volume in underdoped
cuprate systems due to the transfer of occupied states from the Fermi surface
to its shadow, resulting from the strong dynamical antiferromagnetic short
range correlations. The momentum and temperature dependence of the quasi
particle scattering rate shows unusual deviations from the conventional Fermi
liquid like behavior. Their consequences for the changing Fermi surface volume
are discussed. Here, we investigate in detail which scattering processes
might be responsible for a violation of the Luttinger theorem. Finally, we
discuss the formation of hole pockets near half filling.Comment: 5 pages, Revtex, 4 postscript figure
Parameters of the Effective Singlet-Triplet Model for Band Structure of High- Cuprates by Different Approaches
The present paper covers the problem of parameters determination for
High- superconductive copper oxides. Different approaches, {\it ab initio}
LDA and LDA+U calculations and Generalized Tight-Binding (GTB) method for
strongly correlated electron systems, are used to calculate hopping and
exchange parameters of the effective singlet-triplet model for -layer.
The resulting parameters are in remarkably good agreement with each other and
with parameters extracted from experiment. This set of parameters is proposed
for proper quantitative description of physics of hole doped High-
cuprates in the framework of effective models.Comment: PACS 74.72.h; 74.20.z; 74.25.Jb; 31.15.A
Superconductivity in the two dimensional Hubbard Model.
Quasiparticle bands of the two-dimensional Hubbard model are calculated using
the Roth two-pole approximation to the one particle Green's function. Excellent
agreement is obtained with recent Monte Carlo calculations, including an
anomalous volume of the Fermi surface near half-filling, which can possibly be
explained in terms of a breakdown of Fermi liquid theory. The calculated bands
are very flat around the (pi,0) points of the Brillouin zone in agreement with
photoemission measurements of cuprate superconductors. With doping there is a
shift in spectral weight from the upper band to the lower band. The Roth method
is extended to deal with superconductivity within a four-pole approximation
allowing electron-hole mixing. It is shown that triplet p-wave pairing never
occurs. Singlet d_{x^2-y^2}-wave pairing is strongly favoured and optimal
doping occurs when the van Hove singularity, corresponding to the flat band
part, lies at the Fermi level. Nearest neighbour antiferromagnetic correlations
play an important role in flattening the bands near the Fermi level and in
favouring superconductivity. However the mechanism for superconductivity is a
local one, in contrast to spin fluctuation exchange models. For reasonable
values of the hopping parameter the transition temperature T_c is in the range
10-100K. The optimum doping delta_c lies between 0.14 and 0.25, depending on
the ratio U/t. The gap equation has a BCS-like form and (2*Delta_{max})/(kT_c)
~ 4.Comment: REVTeX, 35 pages, including 19 PostScript figures numbered 1a to 11.
Uses epsf.sty (included). Everything in uuencoded gz-compressed .tar file,
(self-unpacking, see header). Submitted to Phys. Rev. B (24-2-95
Effect of Liposome Characteristics and Dose on the Pharmacokinetics of Liposomes Coated with Poly(amino acid)s
Long-circulating liposomes, such as PEG-liposomes, are frequently studied for drug delivery and diagnostic purposes. In our group, poly(amino acid) (PAA)-based coatings for long-circulating liposomes have been developed. These coatings provide liposomes with similar circulation times as compared to PEG-liposomes, but have the advantage of being enzymatically degradable. For PEG-liposomes it has been reported that circulation times are relatively independent of their physicochemical characteristics. In this study, the influence of factors such as PAA grafting density, cholesterol inclusion, surface charge, particle size, and lipid dose on the circulation kinetics of PAA-liposomes was evaluated after intravenous administration in rats. Prolonged circulation kinetics of PAA-liposomes can be maintained upon variation of liposome characteristics and the lipid dose given. However, the use of relatively high amounts of strongly charge-inducing lipids and a too large mean size is to be avoided. In conclusion, PAA-liposomes represent a versatile drug carrier system for a wide variety of applications
Magnetic Properties of YBa_2Cu_3O_{7-\delta} in a self-consistent approach: Comparison with Quantum-Monte-Carlo Simulations and Experiments
We analyze single-particle electronic and two-particle magnetic properties of
the Hubbard model in the underdoped and optimally-doped regime of \YBCO by
means of a modified version of the fluctuation-exchange approximation, which
only includes particle-hole fluctuations. Comparison of our results with
Quantum-Monte Carlo (QMC) calculations at relatively high temperatures () suggests to introduce a temperature renormalization in order to
improve the agreement between the two methods at intermediate and large values
of the interaction .
We evaluate the temperature dependence of the spin-lattice relaxation time
and of the spin-echo decay time and compare it with the results
of NMR measurements on an underdoped and an optimally doped \YBCO sample. For
it is possible to consistently adjust the parameters of the Hubbard
model in order to have a good {\it semi-quantitative} description of this
temperature dependence for temperatures larger than the spin gap as obtained
from NMR measurements. We also discuss the case , which is more
appropriate to describe magnetic and single-particle properties close to
half-filling. However, for this larger value of the agreement with QMC as
well as with experiments at finite doping is less satisfactory.Comment: Final version, to appear in Phys. Rev. B (sched. Feb. 99
Optical properties of an effective one-band Hubbard model for the cuprates
We study the Cu and O spectral density of states and the optical conductivity
of CuO_2 planes using an effective generalized one-band Hubbard model derived
from the extended three-band Hubbard model. We solve exactly a square cluster
of 10 unit cells and average the results over all possible boundary conditions,
what leads to smooth functions of frequency. Upon doping, the Fermi energy
jumps to Zhang-Rice states which are connected to the rest of the valence band
(in contrast to an isolated new band in the middle of the gap). The transfer of
spectral weight depends on the parameters of the original three-band model not
only through the one-band effective parameters but also through the relevant
matrix elements. We discuss the evolution of the gap upon doping. The optical
conductivity of the doped system shows a mid-infrared peak due to intraband
transitions, a pseudogap and a high frequency part related to interband
transitions. Its shape and integrated weight up to a given frequency (including
the Drude weight) agree qualitatively with experiments in the cuprates for low
to moderate doping levels, but significant deviations exist for doping .Comment: 11 pages (tex), 14 figures (ps
Tumour-targeted nanomedicines: principles and practice
Drug targeting systems are nanometre-sized carrier materials designed for improving the biodistribution of systemically applied (chemo)therapeutics. Various different tumour-targeted nanomedicines have been evaluated over the years, and clear evidence is currently available for substantial improvement of the therapeutic index of anticancer agents. Here, we briefly summarise the most important targeting systems and strategies, and discuss recent advances and future directions in the development of tumour-targeted nanomedicines
- …