23,218 research outputs found
Numerical indications of a q-generalised central limit theorem
We provide numerical indications of the -generalised central limit theorem
that has been conjectured (Tsallis 2004) in nonextensive statistical mechanics.
We focus on binary random variables correlated in a {\it scale-invariant}
way. The correlations are introduced by imposing the Leibnitz rule on a
probability set based on the so-called -product with . We show
that, in the large limit (and after appropriate centering, rescaling, and
symmetrisation), the emerging distributions are -Gaussians, i.e., , with , and
with coefficients approaching finite values . The
particular case recovers the celebrated de Moivre-Laplace theorem.Comment: Minor improvements and corrections have been introduced in the new
version. 7 pages including 4 figure
3-Body Dynamics in a (1+1) Dimensional Relativistic Self-Gravitating System
The results of our study of the motion of a three particle, self-gravitating
system in general relativistic lineal gravity is presented for an arbitrary
ratio of the particle masses. We derive a canonical expression for the
Hamiltonian of the system and discuss the numerical solution of the resulting
equations of motion. This solution is compared to the corresponding
non-relativistic and post-Newtonian approximation solutions so that the
dynamics of the fully relativistic system can be interpretted as a correction
to the one-dimensional Newtonian self-gravitating system. We find that the
structure of the phase space of each of these systems yields a large variety of
interesting dynamics that can be divided into three distinct regions: annulus,
pretzel, and chaotic; the first two being regions of quasi-periodicity while
the latter is a region of chaos. By changing the relative masses of the three
particles we find that the relative sizes of these three phase space regions
changes and that this deformation can be interpreted physically in terms of the
gravitational interactions of the particles. Furthermore, we find that many of
the interesting characteristics found in the case where all of the particles
share the same mass also appears in our more general study. We find that there
are additional regions of chaos in the unequal mass system which are not
present in the equal mass case. We compare these results to those found in
similar systems.Comment: latex, 26 pages, 17 figures, high quality figures available upon
request; typos and grammar correcte
Dynamical N-body Equlibrium in Circular Dilaton Gravity
We obtain a new exact equilibrium solution to the N-body problem in a
one-dimensional relativistic self-gravitating system. It corresponds to an
expanding/contracting spacetime of a circle with N bodies at equal proper
separations from one another around the circle. Our methods are
straightforwardly generalizable to other dilatonic theories of gravity, and
provide a new class of solutions to further the study of (relativistic)
one-dimensional self-gravitating systems.Comment: 4 pages, latex, reference added, minor changes in wordin
Histamine release after intravenous application of short-acting hypnotics. A comparison of etomidate, Althesin (CT1341) and propanidid
The subject of histamine release was investigated in 16 volunteers by means of plasma histamine determination after the administration of etornidate, Althesin, propanidid, and Cremophor EL. Althesin and propanidid caused release of histamine in various degrees of frequency. Blood pressure changes were rather pronounced with both anaesthetic agents; tachycardia reached its maximum in the first and second minute, which seems to be an argument against histamine release as the underlying cause of this reaction. Histamine was, indeed, only released to such an extent (with the exception of one borderline case) that no clinical symptoms other than secretion of gastric juice and erythema were to be expected. After the application of etomidate and Cremophor EL an increase in plasma histamine was not detectable. Changes in the differential blood picture in terms of a decrease in basophils only occurred after Althesin and propanidid; not, however, after etomidate and Cremophor EL. Etomidate is, therefore, the first hypnotic drug for intravenous application which is unlikely to cause chemical histamine release
The Symmetries of Nature
The study of the symmetries of nature has fascinated scientists for eons. The application of the formal mathematical description of
symmetries during the last century has produced many breakthroughs in
our understanding of the substructure of matter. In this talk, a number
of these advances are discussed, and the important role that George
Sudarshan played in their development is emphasize
Chaos in an Exact Relativistic 3-body Self-Gravitating System
We consider the problem of three body motion for a relativistic
one-dimensional self-gravitating system. After describing the canonical
decomposition of the action, we find an exact expression for the 3-body
Hamiltonian, implicitly determined in terms of the four coordinate and momentum
degrees of freedom in the system. Non-relativistically these degrees of freedom
can be rewritten in terms of a single particle moving in a two-dimensional
hexagonal well. We find the exact relativistic generalization of this
potential, along with its post-Newtonian approximation. We then specialize to
the equal mass case and numerically solve the equations of motion that follow
from the Hamiltonian. Working in hexagonal-well coordinates, we obtaining
orbits in both the hexagonal and 3-body representations of the system, and plot
the Poincare sections as a function of the relativistic energy parameter . We find two broad categories of periodic and quasi-periodic motions that we
refer to as the annulus and pretzel patterns, as well as a set of chaotic
motions that appear in the region of phase-space between these two types.
Despite the high degree of non-linearity in the relativistic system, we find
that the the global structure of its phase space remains qualitatively the same
as its non-relativisitic counterpart for all values of that we could
study. However the relativistic system has a weaker symmetry and so its
Poincare section develops an asymmetric distortion that increases with
increasing . For the post-Newtonian system we find that it experiences a
KAM breakdown for : above which the near integrable regions
degenerate into chaos.Comment: latex, 65 pages, 36 figures, high-resolution figures available upon
reques
Periodic and discrete Zak bases
Weyl's displacement operators for position and momentum commute if the
product of the elementary displacements equals Planck's constant. Then, their
common eigenstates constitute the Zak basis, each state specified by two phase
parameters. Upon enforcing a periodic dependence on the phases, one gets a
one-to-one mapping of the Hilbert space on the line onto the Hilbert space on
the torus. The Fourier coefficients of the periodic Zak bases make up the
discrete Zak bases. The two bases are mutually unbiased. We study these bases
in detail, including a brief discussion of their relation to Aharonov's modular
operators, and mention how they can be used to associate with the single degree
of freedom of the line a pair of genuine qubits.Comment: 15 pages, 3 figures; displayed abstract is shortened, see the paper
for the complete abstrac
- …