668 research outputs found

    Origin of the spectral linewidth in non linear oscillators based on MgO tunnel junctions

    Full text link
    We demonstrate the strong impact of the oscillator agility on the line broadening by studying spin transfer induced microwave emission in MgO-based tunnel junctions with current. The linewidth is almost not affected by decreasing the temperature. At very low currents, a strong enhancement of the linewidth at low temperature is attributed to an increase of the non linearity, probably due to the field-like torque. Finally we evidence that the noise is not dominated by thermal fluctuations but rather by the chaotization of the magnetization system induced by the spin transfer torque.Comment: 12 pages, 3 figures, published in Phys. Rev. B 80, 060404 (2009

    Identification and selection rules of the spin-wave eigen-modes in a normally magnetized nano-pillar

    Get PDF
    We report on a spectroscopic study of the spin-wave eigen-modes inside an individual normally magnetized two layers circular nano-pillar (Permalloy|Copper|Permalloy) by means of a Magnetic Resonance Force Microscope (MRFM). We demonstrate that the observed spin-wave spectrum critically depends on the method of excitation. While the spatially uniform radio-frequency (RF) magnetic field excites only the axially symmetric modes having azimuthal index =0\ell=0, the RF current flowing through the nano-pillar, creating a circular RF Oersted field, excites only the modes having azimuthal index =+1\ell=+1. Breaking the axial symmetry of the nano-pillar, either by tilting the bias magnetic field or by making the pillar shape elliptical, mixes different \ell-index symmetries, which can be excited simultaneously by the RF current. Experimental spectra are compared to theoretical prediction using both analytical and numerical calculations. An analysis of the influence of the static and dynamic dipolar coupling between the nano-pillar magnetic layers on the mode spectrum is performed

    Electronic control of the spin-wave damping in a magnetic insulator

    Get PDF
    It is demonstrated that the decay time of spin-wave modes existing in a magnetic insulator can be reduced or enhanced by injecting an in-plane dc current, IdcI_\text{dc}, in an adjacent normal metal with strong spin-orbit interaction. The demonstration rests upon the measurement of the ferromagnetic resonance linewidth as a function of IdcI_\text{dc} in a 5~μ\mum diameter YIG(20nm){\textbar}Pt(7nm) disk using a magnetic resonance force microscope (MRFM). Complete compensation of the damping of the fundamental mode is obtained for a current density of 31011A.m2\sim 3 \cdot 10^{11}\text{A.m}^{-2}, in agreement with theoretical predictions. At this critical threshold the MRFM detects a small change of static magnetization, a behavior consistent with the onset of an auto-oscillation regime.Comment: 6 pages 4 figure

    Inverse Spin Hall Effect in nanometer-thick YIG/Pt system

    Full text link
    High quality nanometer-thick (20 nm, 7 nm and 4 nm) epitaxial YIG films have been grown on GGG substrates using pulsed laser deposition. The Gilbert damping coefficient for the 20 nm thick films is 2.3 x 10-4 which is the lowest value reported for sub-micrometric thick films. We demonstrate Inverse spin Hall effect (ISHE) detection of propagating spin waves using Pt. The amplitude and the lineshape of the ISHE voltage correlate well to the increase of the Gilbert damping when decreasing thickness of YIG. Spin Hall effect based loss-compensation experiments have been conducted but no change in the magnetization dynamics could be detected

    Magnetization reversal by injection and transfer of spin: experiments and theory

    Full text link
    Reversing the magnetization of a ferromagnet by spin transfer from a current, rather than by applying a magnetic field, is the central idea of an extensive current research. After a review of our experiments of current-induced magnetization reversal in Co/Cu/Co trilayered pillars, we present the model we have worked out for the calculation of the current-induced torque and the interpretation of the experiments

    Enhancing the activity of platinum-based drugs by improved inhibitors of ERCC1–XPF-mediated DNA repair

    Get PDF
    Purpose: The ERCC1–XPF 5′–3′ DNA endonuclease complex is involved in the nucleotide excision repair pathway and in the DNA inter-strand crosslink repair pathway, two key mechanisms modulating the activity of chemotherapeutic alkylating agents in cancer cells. Inhibitors of the interaction between ERCC1 and XPF can be used to sensitize cancer cells to such drugs. Methods: We tested recently synthesized new generation inhibitors of this interaction and evaluated their capacity to sensitize cancer cells to the genotoxic activity of agents in synergy studies, as well as their capacity to inhibit the protein–protein interaction in cancer cells using proximity ligation assay. Results: Compound B9 showed the best activity being synergistic with cisplatin and mitomycin C in both colon and lung cancer cells. Also, B9 abolished the interaction between ERCC1 and XPF in cancer cells as shown by proximity ligation assay. Results of different compounds correlated with values from our previously obtained in silico predictions. Conclusion: Our results confirm the feasibility of the approach of targeting the protein–protein interaction between ERCC1 and XPF to sensitize cancer cells to alkylating agents, thanks to the improved binding affinity of the newly synthesized compounds

    Giant magnetic enhancement in Fe/Pd films and its influence on the magnetic interlayer coupling

    Full text link
    The magnetic properties of thin Pd fcc(001) films with embedded monolayers of Fe are investigated by means of first principles density functional theory. The induced spin polarization in Pd is calculated and analyzed in terms of quantum interference within the Fe/Pd/Fe bilayer system. An investigation of the magnetic enhancement effects on the spin polarization is carried out and its consequences for the magnetic interlayer coupling are discussed. In contrast to {\it e.g.} the Co/Cu fcc(001) system we find a large effect on the magnetic interlayer coupling due to magnetic enhancement in the spacer material. In the case of a single embedded Fe monolayer we find aninduced Pd magnetization decaying with distance nn from the magnetic layer as ~nαn^{-\alpha} with α2.4\alpha \approx 2.4. For the bilayer system we find a giant magnetic enhancement (GME) that oscillates strongly due to interference effects. This results in a strongly modified magnetic interlayer coupling, both in phase and magnitude, which may not be described in the pure Ruderman-Kittel-Kasuya-Yoshida (RKKY) picture. No anti-ferromagnetic coupling was found and by comparison with magnetically constrained calculations we show that the overall ferromagnetic coupling can be understood from the strong polarization of the Pd spacer

    Electronic Collective Modes and Superconductivity in Layered Conductors

    Full text link
    A distinctive feature of layered conductors is the presence of low-energy electronic collective modes of the conduction electrons. This affects the dynamic screening properties of the Coulomb interaction in a layered material. We study the consequences of the existence of these collective modes for superconductivity. General equations for the superconducting order parameter are derived within the strong-coupling phonon-plasmon scheme that account for the screened Coulomb interaction. Specifically, we calculate the superconducting critical temperature Tc taking into account the full temperature, frequency and wave-vector dependence of the dielectric function. We show that low-energy plasmons may contribute constructively to superconductivity. Three classes of layered superconductors are discussed within our model: metal-intercalated halide nitrides, layered organic materials and high-Tc oxides. In particular, we demonstrate that the plasmon contribution (electronic mechanism) is dominant in the first class of layered materials. The theory shows that the description of so-called ``quasi-two-dimensional superconductors'' cannot be reduced to a purely 2D model, as commonly assumed. While the transport properties are strongly anisotropic, it remains essential to take into account the screened interlayer Coulomb interaction to describe the superconducting state of layered materials.Comment: Final version (minor changes) 14 pages, 6 figure

    Spin torque resonant vortex core expulsion for an efficient radio-frequency detection scheme

    Full text link
    Spin-polarised radio-frequency currents, whose frequency is equal to that of the gyrotropic mode, will cause an excitation of the core of a magnetic vortex confined in a magnetic tunnel junction. When the excitation radius of the vortex core is greater than that of the junction radius, vortex core expulsion is observed, leading to a large change in resistance, as the layer enters a predominantly uniform magnetisation state. Unlike the conventional spin-torque diode effect, this highly tunable resonant effect will generate a voltage which does not decrease as a function of rf power, and has the potential to form the basis of a new generation of tunable nanoscale radio-frequency detectors
    corecore