12 research outputs found

    Conformal proper times according to the Woodhouse causal axiomatics of relativistic spacetimes

    Full text link
    On the basis of the Woodhouse causal axiomatics, we show that conformal proper times and an extra variable in addition to those of space and time, precisely and physically identified from experimental examples, together give a physical justification for the `chronometric hypothesis' of general relativity. Indeed, we show that, with a lack of these latter two ingredients, no clock paradox solution exists in which the clock and message functions are solely at the origin of the asymmetry. These proper times originate from a given conformal structure of the spacetime when ascribing different compatible projective structures to each Woodhouse particle, and then, each defines a specific Weylian sheaf structure. In addition, the proper time parameterizations, as two point functions, cannot be defined irrespective of the processes in the relative changes of physical characteristics. These processes are included via path-dependent conformal scale factors, which act like sockets for any kind of physical interaction and also represent the values of the variable associated with the extra dimension. As such, the differential aging differs far beyond the first and second clock effects in Weyl geometries, with the latter finally appearing to not be suitable.Comment: 25 pages, 2 figure

    The Strongly Coupled 't Hooft Model on the Lattice

    Get PDF
    We study the strong coupling limit of the one-flavor and two-flavor massless 't Hooft models, largeNclarge-{\cal N}_c-color QCD2QCD_2, on a lattice. We use staggered fermions and the Hamiltonian approach to lattice gauge theories. We show that the one-flavor model is effectively described by the antiferromagnetic Ising model, whose ground state is the vacuum of the gauge model in the infinite coupling limit; expanding around this ground state we derive a strong coupling expansion and compute the lowest lying hadron masses as well as the chiral condensate of the gauge theory. Our lattice computation well reproduces the results of the continuum theory. Baryons are massless in the infinite coupling limit; they acquire a mass already at the second order in the strong coupling expansion in agreement with the Witten argument that baryons are the QCDQCD solitons. The spectrum and chiral condensate of the two-flavor model are effectively described in terms of observables of the quantum antiferromagnetic Heisenberg model. We explicitly write the lowest lying hadron masses and chiral condensate in terms of spin-spin correlators on the ground state of the spin model. We show that the planar limit (Nc{\cal N}_c\longrightarrow \infty) of the gauge model corresponds to the large spin limit (SS\longrightarrow \infty) of the antiferromagnet and compute the hadron mass spectrum in this limit finding that, also in this model, the pattern of chiral symmetry breaking of the continuum theory is well reproduced on the lattice.Comment: LaTex, 25 pages, no figure

    Improved lattice QCD with quarks: the 2 dimensional case

    Get PDF
    QCD in two dimensions is investigated using the improved fermionic lattice Hamiltonian proposed by Luo, Chen, Xu, and Jiang. We show that the improved theory leads to a significant reduction of the finite lattice spacing errors. The quark condensate and the mass of lightest quark and anti-quark bound state in the strong coupling phase (different from t'Hooft phase) are computed. We find agreement between our results and the analytical ones in the continuum.Comment: LaTeX file (including text + 10 figures

    Elementary Particles: What are they? Substances, elements and primary matter

    Full text link
    The most successful "Standard Model" allows one to define the so-called "Elementary Particles". Now from another point of view, philosophical, how can we think of them? Which kind of a status can be attributed to Elementary Particles and their associated quantised fields? Beyond the unprecedented efficiency and reach of quantum field theories the current paper attempts at understanding the nature of what we talk about, the enigmatic reality of the quantum world
    corecore