12 research outputs found
Conformal proper times according to the Woodhouse causal axiomatics of relativistic spacetimes
On the basis of the Woodhouse causal axiomatics, we show that conformal
proper times and an extra variable in addition to those of space and time,
precisely and physically identified from experimental examples, together give a
physical justification for the `chronometric hypothesis' of general relativity.
Indeed, we show that, with a lack of these latter two ingredients, no clock
paradox solution exists in which the clock and message functions are solely at
the origin of the asymmetry. These proper times originate from a given
conformal structure of the spacetime when ascribing different compatible
projective structures to each Woodhouse particle, and then, each defines a
specific Weylian sheaf structure. In addition, the proper time
parameterizations, as two point functions, cannot be defined irrespective of
the processes in the relative changes of physical characteristics. These
processes are included via path-dependent conformal scale factors, which act
like sockets for any kind of physical interaction and also represent the values
of the variable associated with the extra dimension. As such, the differential
aging differs far beyond the first and second clock effects in Weyl geometries,
with the latter finally appearing to not be suitable.Comment: 25 pages, 2 figure
The Strongly Coupled 't Hooft Model on the Lattice
We study the strong coupling limit of the one-flavor and two-flavor massless
't Hooft models, -color , on a lattice. We use
staggered fermions and the Hamiltonian approach to lattice gauge theories. We
show that the one-flavor model is effectively described by the
antiferromagnetic Ising model, whose ground state is the vacuum of the gauge
model in the infinite coupling limit; expanding around this ground state we
derive a strong coupling expansion and compute the lowest lying hadron masses
as well as the chiral condensate of the gauge theory. Our lattice computation
well reproduces the results of the continuum theory. Baryons are massless in
the infinite coupling limit; they acquire a mass already at the second order in
the strong coupling expansion in agreement with the Witten argument that
baryons are the solitons.
The spectrum and chiral condensate of the two-flavor model are effectively
described in terms of observables of the quantum antiferromagnetic Heisenberg
model. We explicitly write the lowest lying hadron masses and chiral condensate
in terms of spin-spin correlators on the ground state of the spin model. We
show that the planar limit () of the gauge
model corresponds to the large spin limit () of the
antiferromagnet and compute the hadron mass spectrum in this limit finding
that, also in this model, the pattern of chiral symmetry breaking of the
continuum theory is well reproduced on the lattice.Comment: LaTex, 25 pages, no figure
Improved lattice QCD with quarks: the 2 dimensional case
QCD in two dimensions is investigated using the improved fermionic lattice
Hamiltonian proposed by Luo, Chen, Xu, and Jiang. We show that the improved
theory leads to a significant reduction of the finite lattice spacing errors.
The quark condensate and the mass of lightest quark and anti-quark bound state
in the strong coupling phase (different from t'Hooft phase) are computed. We
find agreement between our results and the analytical ones in the continuum.Comment: LaTeX file (including text + 10 figures
Elementary Particles: What are they? Substances, elements and primary matter
The most successful "Standard Model" allows one to define the so-called
"Elementary Particles". Now from another point of view, philosophical, how can
we think of them? Which kind of a status can be attributed to Elementary
Particles and their associated quantised fields? Beyond the unprecedented
efficiency and reach of quantum field theories the current paper attempts at
understanding the nature of what we talk about, the enigmatic reality of the
quantum world