152 research outputs found

    Stellar mass-loss near the Eddington limit. Tracing the sub-photospheric layers of classical Wolf-Rayet stars

    Full text link
    Towards the end of their evolution hot massive stars develop strong stellar winds and appear as emission line stars, such as WR stars or LBVs. The quantitative description of the mass loss in these important pre-SN phases is hampered by unknowns such as clumping and porosity due to an in-homogeneous wind structure, and by an incomplete theoretical understanding of optically thick stellar winds. In this work we investigate the conditions in deep atmospheric layers of WR stars to find out whether these comply with the theory of optically thick winds, and whether we find indications of clumping in these layers. We use a new semi-empirical method to determine sonic-point optical depths, densities, and temperatures for a large sample of WR stars of the carbon (WC) and oxygen (WO) sequence. Based on an artificial model sequence we investigate the reliability of our method and its sensitivity to uncertainties in stellar parameters. We find that the WR stars in our sample obey an approximate relation with P_rad/P_gas~80 at the sonic point. This 'wind condition' is ubiquitous for radiatively driven, optically thick winds, and sets constraints on possible wind/envelope solutions affecting radii, mass-loss rates, and clumping properties. Our results suggest that the presence of an optically thick wind may force many stars near the Eddington limit to develop clumped, radially extended sub-surface zones. The clumping in these zones is most likely sustained by the non-linear strange-mode instability, and may be the origin of the observed wind clumping. The properties of typical late-type WC stars comply with this model. Solutions without sub-surface clumping and inflation are also possible but demand for compact stars with comparatively low mass-loss rates. These objects may resemble the small group of WO stars with their exceptionally hot stellar temperatures and highly ionized winds.Comment: accepted by A&

    Narrow He II emission in star-forming galaxies at low metallicity. Stellar wind emission from a population of Very Massive Stars

    Full text link
    In a recent study star-forming galaxies with HeII emission between redshifts 2 and 4.6 have been found to occur in two modes, distinguished by the width of their HeII emission lines. Broad HeII emission has been attributed to stellar emission from a population of evolved Wolf-Rayet (WR) stars while narrow HeII emission has been attributed to nebular emission excited by a population of very hot PopIII stars formed in pockets of pristine gas at moderate redshifts. In this work we propose an alternative scenario for the origin of the narrow HeII emission, namely very massive stars (VMS) at low metallicity (Z) which form strong but slow WR-type stellar winds due to their proximity to the Eddington limit. We estimate the expected HeII line fluxes and equivalent widths based on wind models for VMS and population synthesis models, and compare the results with recent observations of star-forming galaxies at moderate redshifts. The observed HeII line strengths and equivalent widths are in line with what is expected for a population of VMS in one or more young super-clusters located within these galaxies. In our scenario the two observed modes of HeII emission originate from massive stellar populations in distinct evolutionary stages at low Z. If this interpretation is correct there is no need to postulate the existence of PopIII stars at moderate redshifts to explain the observed narrow HeII emission. An interesting possibility is the existence of self-enriched VMS with similar WR-type spectra at extremely low Z. Stellar HeII emission from such very early generations of VMS may be detectable in future studies of star-forming galaxies at high redshifts with the James Webb Space Telescope. The fact that the HeII emission of VMS is largely neglected in current population synthesis models will generally affect the interpretation of the integrated spectra of young stellar populations.Comment: 4 pages, 1 figure, A&A letters (accepted

    Revised element abundances for WC-type central stars

    Full text link
    According to previous spectral analyses of Wolf-Rayet type central stars, late [WC] subtypes show systematically higher carbon-to-helium abundance ratios than early [WC] subtypes. If this were true, it would rule out that these stars form an evolutionary sequence. However, due to the different parameter domains and diagnostic lines, one might suspect systematic errors being the source of this discrepancy. In an ongoing project we are therefore checking the [WC] analyses by means of the last generation of non-LTE models for expanding stellar atmospheres which account for line-blanketing and wind clumping. So far, the abundance discrepancy is not resolved. Further element abundances (H, N, Fe) are determined and compared with evolutionary predictions.Comment: 4 pages, 5 figures, in conference proceedings of "Planetary Nebulae in our Galaxy and Beyond" IAU Symposion 234, 2006, editors: Michael J. Barlow, Roberto H. M\'ende

    Stellar envelope inflation near the Eddington limit. Implications for the radii of Wolf-Rayet stars and luminous blue variables

    Full text link
    (shortened) It has been proposed that the envelopes of luminous stars may be subject to substantial radius inflation. The inflation effect has been discussed in relation to the radius problem of WR stars, but has yet failed to explain the large observed radii of Galactic WR stars. We wish to obtain a physical perspective of the inflation effect, and study the consequences for the radii of WR stars, and LBVs. For WR stars the observed radii are up to an order of magnitude larger than predicted by theory, whilst S Doradus-type LBVs are subject to humongous radius variations, which remain as yet ill-explained. We use a dual approach to investigate the envelope inflation, based on numerical models for stars near the Eddington limit, and a new analytic formalism to describe the effect. An additional new aspect is that we take the effect of density inhomogeneities (clumping) within the outer stellar envelopes into account. Due to the effect of clumping we are able to bring the observed WR radii in agreement with theory. Based on our new formalism, we find that the radial inflation is a function of a dimensionless parameter W, which largely depends on the topology of the Fe-opacity peak, i.e., on material properties. For W>1, we discover an instability limit, for which the stellar envelope becomes gravitationally unbound, i.e. there no longer exists a static solution. Within this framework we are also able to explain the S Doradus-type instabilities for LBVs like AG Car, with a possible triggering due to changes in stellar rotation. The stellar effective temperatures in the upper HR diagram are potentially strongly affected by the inflation effect. This may have particularly strong effects on the evolved massive LBV and WR stars just prior to their final collapse, as the progenitors of SNe Ibc, SNe II, and long GRBs.Comment: 15 pages, 11 Figures, recommended for publication in A&
    • …
    corecore