226 research outputs found

    Fe XVII X-ray Line Ratios for Accurate Astrophysical Plasma Diagnostics

    Full text link
    New laboratory measurements using an Electron Beam Ion Trap (EBIT) and an x-ray microcalorimeter are presented for the n=3 to n=2 Fe XVII emission lines in the 15 {\AA} to 17 {\AA} range, along with new theoretical predictions for a variety of electron energy distributions. This work improves upon our earlier work on these lines by providing measurements at more electron impact energies (seven values from 846 to 1185 eV), performing an in situ determination of the x-ray window transmission, taking steps to minimize the ion impurity concentrations, correcting the electron energies for space charge shifts, and estimating the residual electron energy uncertainties. The results for the 3C/3D and 3s/3C line ratios are generally in agreement with the closest theory to within 10%, and in agreement with previous measurements from an independent group to within 20%. Better consistency between the two experimental groups is obtained at the lowest electron energies by using theory to interpolate, taking into account the significantly different electron energy distributions. Evidence for resonance collision effects in the spectra is discussed. Renormalized values for the absolute cross sections of the 3C and 3D lines are obtained by combining previously published results, and shown to be in agreement with the predictions of converged R-matrix theory. This work establishes consistency between results from independent laboratories and improves the reliability of these lines for astrophysical diagnostics. Factors that should be taken into account for accurate diagnostics are discussed, including electron energy distribution, polarization, absorption/scattering, and line blends.Comment: 29 pages, including 7 figure

    EUV spectra of highly-charged ions W54+^{54+}-W63+^{63+} relevant to ITER diagnostics

    Full text link
    We report the first measurements and detailed analysis of extreme ultraviolet (EUV) spectra (4 nm to 20 nm) of highly-charged tungsten ions W54+^{54+} to W63+^{63+} obtained with an electron beam ion trap (EBIT). Collisional-radiative modelling is used to identify strong electric-dipole and magnetic-dipole transitions in all ionization stages. These lines can be used for impurity transport studies and temperature diagnostics in fusion reactors, such as ITER. Identifications of prominent lines from several W ions were confirmed by measurement of isoelectronic EUV spectra of Hf, Ta, and Au. We also discuss the importance of charge exchange recombination for correct description of ionization balance in the EBIT plasma.Comment: 11 pages, 4 figure

    A Laser System for the Spectroscopy of Highly-Charged Bismuth Ions

    Full text link
    We present and characterize a laser system for the spectroscopy on highly-charged ^209Bi^82+ ions at a wavelength of 243.87 nm. For absolute frequency stabilization, the laser system is locked to a near-infra-red laser stabilized to a rubidium transition line using a transfer cavity based locking scheme. Tuning of the output frequency with high precision is achieved via a tunable rf offset lock. A sample-and-hold technique gives an extended tuning range of several THz in the UV. This scheme is universally applicable to the stabilization of laser systems at wavelengths not directly accessible to atomic or molecular resonances. We determine the frequency accuracy of the laser system using Doppler-free absorption spectroscopy of Te_2 vapour at 488 nm. Scaled to the target wavelength of 244 nm, we achieve a frequency uncertainty of \sigma_{244nm} = 6.14 MHz (one standard deviation) over six days of operation.Comment: Contribution to the special issue on "Trapped Ions" in "Applied Physics B

    Dense Antihydrogen: Its Production and Storage to Envision Antimatter Propulsion

    Full text link
    We discuss the possibility that dense antihydrogen could provide a path towards a mechanism for a deep space propulsion system. We concentrate at first, as an example, on Bose-Einstein Condensate (BEC) antihydrogen. In a Bose-Einstein Condensate, matter (or antimatter) is in a coherent state analogous to photons in a laser beam, and individual atoms lose their independent identity. This allows many atoms to be stored in a small volume. In the context of recent advances in producing and controlling BECs, as well as in making antihydrogen, this could potentially provide a revolutionary path towards the efficient storage of large quantities of antimatter, perhaps eventually as a cluster or solid.Comment: 12 pages, 3 figure

    Measurement of a magnetic-dipole transition probability in Xe32+ using an electron-beam ion trap

    Get PDF
    Journals published by the American Physical Society can be found at http://publish.aps.org/The transition probability for the 3d(4) D-5(2) <-- D-5(3) magnetic-dipole transition in Ti-like Xe (Xe32+) has been measured using an electron-beam ion trap. The unusually weak dependence of the transition energy on nuclear charge Z, and the fact that the transition wavelength remains in the 320- to 400-nm range for 54<Z<92, makes this transition promising as a plasma diagnostic tool. Our measurement of the transition probability yields 465(30) s(-1), corresponding to a lifetime of 2.15(14) ms, in good agreement with the theoretical value of 2.4 ms

    UTA versus line emission for EUVL: Studies on xenon emission at the NIST EBIT

    Full text link
    Spectra from xenon ions have been recorded at the NIST EBIT and the emission into a 2% bandwidth at 13.5 nm arising from 4d-5p transitions compared with that from 4d-4f and 4p-4d transitions in Xe XI and also with that obtained from the unresolved transition array (UTA) observed to peak just below 11 nm. It was found that an improvement of a factor of five could be gained in photon yield using the UTA rather than the 4d-5p emission. The results are compared with atomic structure calculations and imply that a significant gain in efficiency should be obtained using tin, in which the emission at 13.5 nm comes from a similar UTA, rather than xenon as an EUVL source material

    Cross-site comparison of ribosomal depletion kits for Illumina RNAseq library construction

    Get PDF
    Background Ribosomal RNA (rRNA) comprises at least 90% of total RNA extracted from mammalian tissue or cell line samples. Informative transcriptional profiling using massively parallel sequencing technologies requires either enrichment of mature poly-adenylated transcripts or targeted depletion of the rRNA fraction. The latter method is of particular interest because it is compatible with degraded samples such as those extracted from FFPE and also captures transcripts that are not poly-adenylated such as some non-coding RNAs. Here we provide a cross-site study that evaluates the performance of ribosomal RNA removal kits from Illumina, Takara/Clontech, Kapa Biosystems, Lexogen, New England Biolabs and Qiagen on intact and degraded RNA samples. Results We find that all of the kits are capable of performing significant ribosomal depletion, though there are differences in their ease of use. All kits were able to remove ribosomal RNA to below 20% with intact RNA and identify ~ 14,000 protein coding genes from the Universal Human Reference RNA sample at >1FPKM. Analysis of differentially detected genes between kits suggests that transcript length may be a key factor in library production efficiency. Conclusions These results provide a roadmap for labs on the strengths of each of these methods and how best to utilize them. Keywords: RNAseqr; RNA depletion; Illumina; NGS; ABRF; TranscriptomicsNational Cancer Institute (U.S.) (Grant P30-CA14051)National Institute of Environmental Health Sciences (Grant P30-ES002109
    corecore