12,698 research outputs found
Neural-Based Nonlinear Device Models for Intermodulation Analysis
A new procedure to learn a nonlinear model together with its derivative parameters using a composite neural network is presented.So far neural networks have never been used to extract large-signal device model accounting for distortion parameters.Applying this method to FET devices leads to nonlinear models for current- voltage functions which allow improved prediction of weak and mildly device nonlinearities in the whole bias region. The resulting models have demonstrated to be suitable for both small-signal and large-signal analyses,including intermodulation distortion prediction
Collective Gradient Sensing in Fish Schools
Throughout the animal kingdom, animals frequently benefit from living in groups. Models of collective behaviour show that simple local interactions are sufficient to generate group morphologies found in nature (swarms, flocks and mills). However, individuals also interact with the complex noisy environment in which they live. In this work, we experimentally investigate the group performance in navigating a noisy light gradient of two unrelated freshwater species: golden shiners (Notemigonuscrysoleucas) and rummy nose tetra (Hemigrammus bleheri). We find that tetras outperform shiners due to their innate individual ability to sense the environmental gradient. Using numerical simulations, we examine how group performance depends on the relative weight of social and environmental information. Our results highlight the importance of balancing of social and environmental information to promote optimal group morphologies and performance
Embodying functionally relevant action sounds in patients with spinal cord injury
Growing evidence indicates that perceptual-motor codes may be associated with and influenced by actual bodily states. Following a spinal cord injury (SCI), for example, individuals exhibit reduced visual sensitivity to biological motion. However, a dearth of direct evidence exists about whether profound alterations in sensorimotor traffic between the body and brain influence audio-motor representations. We tested 20 wheelchair-bound individuals with lower skeletal-level SCI who were unable to feel and move their lower limbs, but have retained upper limb function. In a two-choice, matching-to-sample auditory discrimination task, the participants were asked to determine which of two action sounds matched a sample action sound presented previously. We tested aural discrimination ability using sounds that arose from wheelchair, upper limb, lower limb, and animal actions. Our results indicate that an inability to move the lower limbs did not lead to impairment in the discrimination of lower limb-related action sounds in SCI patients. Importantly, patients with SCI discriminated wheelchair sounds more quickly than individuals with comparable auditory experience (i.e. physical therapists) and inexperienced, able-bodied subjects. Audio-motor associations appear to be modified and enhanced to incorporate external salient tools that now represent extensions of their body schema
Theoretical and experimental assessment of the non-linear scattering functions for the cad of non-linear microwave circuits
The Non-Linear Scattering Functions have been theoretically defined and experimentally measured for the linear-equivalent design of non-linear circuits in arbitrary large signal conditions. Non-linear measures and simulations have been compared, with good agreement. Linear CAD concepts can therefore be extended to non-linear circuits in a rigorous way
On the binarity of the classical Cepheid X Sgr from interferometric observations
Optical-infrared interferometry can provide direct geometrical measurements
of the radii of Cepheids and/or reveal unknown binary companions of these
stars. Such information is of great importance for a proper calibration of
Period-Luminosity relations and for determining binary fraction among Cepheids.
We observed the Cepheid X Sgr with VLTI/AMBER in order to confirm or disprove
the presence of the hypothesized binary companion and to directly measure the
mean stellar radius, possibly detecting its variation along the pulsation
cycle. From AMBER observations in MR mode we performed a binary model fitting
on the closure phase and a limb-darkened model fitting on the visibility. Our
analysis indicates the presence of a point-like companion at a separation of
10.7 mas and 5.6 magK fainter than the primary, whose flux and position are
sharply constrained by the data. The radius pulsation is not detected, whereas
the average limb-darkened diameter results to be 1.48+/-0.08 mas, corresponding
to 53+/-3 R_sun at a distance of 333.3 pc.Comment: 5 pages, 3 figures, research not
Preeminent role of the Van Hove singularity in the strong-coupling analysis of scanning tunneling spectroscopy for two-dimensional cuprates
In two dimensions the non-interacting density of states displays a Van Hove
singularity (VHS) which introduces an intrinsic electron-hole asymmetry, absent
in three dimensions. We show that due to this VHS the strong-coupling analysis
of tunneling spectra in high- superconductors must be reconsidered. Based
on a microscopic model which reproduces the experimental data with great
accuracy, we elucidate the peculiar role played by the VHS in shaping the
tunneling spectra, and show that more conventional analyses of strong-coupling
effects can lead to severe errors.Comment: 5 pages, 4 figure
- …