73 research outputs found
Recommended from our members
Modelling of thrombin generation under flow in realistic left anterior descending geometries
Currently there are no available methods for prediction of thrombotic complications in Coronary Artery disease. Additionally, blood coagulation tests are mainly performed in a steady system while coagulation in vivo occurs under flow conditions. In this work, a phenomenological model for coagulation up-to thrombin generation is proposed; the model is mainly based on the results of thrombin generation assays and therefore it can account for the variation of the coagulability that is observed in different individuals. The model is applied on 3 cases of left anterior descending arteries (LAD) with 50% maximum stenosis placed at a different location and have been statistically assessed as of different complication risk. The simulations showed that parameters of thrombin generation assays obtain different values when they refer to thrombin generation under realistic coronary flow conditions. The flow conditions prevailing locally because of the geometric differences among the arterial trees can lead to different initiation times and thrombin production rates and it also alters the spatial distribution of the coagulation products. Similarly, small changes of the coagulation characteristics of blood under identical flow conditions can allow or prevent the initiation of coagulation. The results indicate that combined consideration of geometry and coagulation characteristics of blood can lead to entirely different conclusions compared to independent assessment of each factor
Thromboembolic Disease in Patients With Cancer and COVID-19: Risk Factors, Prevention and Practical Thromboprophylaxis Recommendations-State-of-the-Art.
Cancer and COVID-19 are both well-established risk factors predisposing to
thrombosis. Both disease entities are correlated with increased incidence of
venous thrombotic events through multifaceted pathogenic mechanisms involving
the interaction of cancer cells or SARS-CoV2 on the one hand and the coagulation
system and endothelial cells on the other hand. Thromboprophylaxis is
recommended for hospitalized patients with active cancer and high-risk
outpatients with cancer receiving anticancer treatment. Universal
thromboprophylaxis with a high prophylactic dose of low molecular weight
heparins (LMWH) or therapeutic dose in select patients, is currentlyindicated
for hospitalized patients with COVID-19. Also, prophylactic anticoagulation is
recommended for outpatients with COVID-19 at high risk for thrombosis or disease
worsening. However, whether there is an additive risk of thrombosis when a
patient with cancer is infected with SARS-CoV2 remains unclear In the current
review, we summarize and critically discuss the literature regarding the
epidemiology of thrombotic events in patients with cancer and concomitant
COVID-19, the thrombotic risk assessment, and the recommendations on
thromboprophylaxis for this subgroup of patients. Current data do not support an
additive thrombotic risk for patients with cancer and COVID-19. Of note,
patients with cancer have less access to intensive care unit care, a setting
associated with high thrombotic risk. Based on current evidence, patients with
cancer and COVID-19 should be assessed with well-established risk assessment
models for medically ill patients and receive thromboprophylaxis, preferentially
with LMWH, according to existing recommendations. Prospective trials on well-characterized populations do not exist
Practical Recommendations for Optimal Thromboprophylaxis in Patients with COVID-19:A Consensus Statement Based on Available Clinical Trials
Coronavirus disease 2019 (COVID-19) has been shown to be strongly associated with increased risk for venous thromboembolism events (VTE) mainly in the inpatient but also in the outpatient setting. Pharmacologic thromboprophylaxis has been shown to offer significant benefits in terms of reducing not only VTE events but also mortality, especially in acutely ill patients with COVID-19. Although the main source of evidence is derived from observational studies with several limitations, thromboprophylaxis is currently recommended for all hospitalized patients with acceptable bleeding risk by all national and international guidelines. Recently, high quality data from randomized controlled trials (RCTs) further support the role of thromboprophylaxis and provide insights into the optimal thromboprophylaxis strategy. The aim of this statement is to systematically review all the available evidence derived from RCTs regarding thromboprophylaxis strategies in patients with COVID-19 in different settings (either inpatient or outpatient) and provide evidence-based guidance to practical questions in everyday clinical practice. Clinical questions accompanied by practical recommendations are provided based on data derived from 20 RCTs that were identified and included in the present study. Overall, the main conclusions are: (i) thromboprophylaxis should be administered in all hospitalized patients with COVID-19, (ii) an optimal dose of inpatient thromboprophylaxis is dependent upon the severity of COVID-19, (iii) thromboprophylaxis should be administered on an individualized basis in post-discharge patients with COVID-19 with high thrombotic risk, and (iv) thromboprophylaxis should not be routinely administered in outpatients. Changes regarding the dominant SARS-CoV-2 variants, the wide immunization status (increasing rates of vaccination and reinfections), and the availability of antiviral therapies and monoclonal antibodies might affect the characteristics of patients with COVID-19; thus, future studies will inform us about the thrombotic risk and the optimal therapeutic strategies for these patients
Guidance for the Management of Patients with Vascular Disease or Cardiovascular Risk Factors and COVID-19: Position Paper from VAS-European Independent Foundation in Angiology/Vascular Medicine .
COVID-19 is also manifested with hypercoagulability, pulmonary intravascular coagulation, microangiopathy, and venous thromboembolism (VTE) or arterial thrombosis. Predisposing risk factors to severe COVID-19 are male sex, underlying cardiovascular disease, or cardiovascular risk factors including noncontrolled diabetes mellitus or arterial hypertension, obesity, and advanced age. The VAS-European Independent Foundation in Angiology/Vascular Medicine draws attention to patients with vascular disease (VD) and presents an integral strategy for the management of patients with VD or cardiovascular risk factors (VD-CVR) and COVID-19. VAS recommends (1) a COVID-19-oriented primary health care network for patients with VD-CVR for identification of patients with VD-CVR in the community and patients' education for disease symptoms, use of eHealth technology, adherence to the antithrombotic and vascular regulating treatments, and (2) close medical follow-up for efficacious control of VD progression and prompt application of physical and social distancing measures in case of new epidemic waves. For patients with VD-CVR who receive home treatment for COVID-19, VAS recommends assessment for (1) disease worsening risk and prioritized hospitalization of those at high risk and (2) VTE risk assessment and thromboprophylaxis with rivaroxaban, betrixaban, or low-molecular-weight heparin (LMWH) for those at high risk. For hospitalized patients with VD-CVR and COVID-19, VAS recommends (1) routine thromboprophylaxis with weight-adjusted intermediate doses of LMWH (unless contraindication); (2) LMWH as the drug of choice over unfractionated heparin or direct oral anticoagulants for the treatment of VTE or hypercoagulability; (3) careful evaluation of the risk for disease worsening and prompt application of targeted antiviral or convalescence treatments; (4) monitoring of D-dimer for optimization of the antithrombotic treatment; and (5) evaluation of the risk of VTE before hospital discharge using the IMPROVE-D-dimer score and prolonged post-discharge thromboprophylaxis with rivaroxaban, betrixaban, or LMWH
Practical Recommendations for Optimal Thromboprophylaxis in Patients with COVID-19: A Consensus Statement Based on Available Clinical Trials.
Coronavirus disease 2019 (COVID-19) has been shown to be strongly associated with increased risk for venous thromboembolism events (VTE) mainly in the inpatient but also in the outpatient setting. Pharmacologic thromboprophylaxis has been shown to offer significant benefits in terms of reducing not only VTE events but also mortality, especially in acutely ill patients with COVID-19. Although the main source of evidence is derived from observational studies with several limitations, thromboprophylaxis is currently recommended for all hospitalized patients with acceptable bleeding risk by all national and international guidelines. Recently, high quality data from randomized controlled trials (RCTs) further support the role of thromboprophylaxis and provide insights into the optimal thromboprophylaxis strategy. The aim of this statement is to systematically review all the available evidence derived from RCTs regarding thromboprophylaxis strategies in patients with COVID-19 in different settings (either inpatient or outpatient) and provide evidence-based guidance to practical questions in everyday clinical practice. Clinical questions accompanied by practical recommendations are provided based on data derived from 20 RCTs that were identified and included in the present study. Overall, the main conclusions are: (i) thromboprophylaxis should be administered in all hospitalized patients with COVID-19, (ii) an optimal dose of inpatient thromboprophylaxis is dependent upon the severity of COVID-19, (iii) thromboprophylaxis should be administered on an individualized basis in post-discharge patients with COVID-19 with high thrombotic risk, and (iv) thromboprophylaxis should not be routinely administered in outpatients. Changes regarding the dominant SARS-CoV-2 variants, the wide immunization status (increasing rates of vaccination and reinfections), and the availability of antiviral therapies and monoclonal antibodies might affect the characteristics of patients with COVID-19; thus, future studies will inform us about the thrombotic risk and the optimal therapeutic strategies for these patients
Anticoagulants and the Propagation Phase of Thrombin Generation
The view that clot time-based assays do not provide a sufficient assessment of an individual's hemostatic competence, especially in the context of anticoagulant therapy, has provoked a search for new metrics, with significant focus directed at techniques that define the propagation phase of thrombin generation. Here we use our deterministic mathematical model of tissue-factor initiated thrombin generation in combination with reconstructions using purified protein components to characterize how the interplay between anticoagulant mechanisms and variable composition of the coagulation proteome result in differential regulation of the propagation phase of thrombin generation. Thrombin parameters were extracted from computationally derived thrombin generation profiles generated using coagulation proteome factor data from warfarin-treated individuals (N = 54) and matching groups of control individuals (N = 37). A computational clot time prolongation value (cINR) was devised that correlated with their actual International Normalized Ratio (INR) values, with differences between individual INR and cINR values shown to derive from the insensitivity of the INR to tissue factor pathway inhibitor (TFPI). The analysis suggests that normal range variation in TFPI levels could be an important contributor to the failure of the INR to adequately reflect the anticoagulated state in some individuals. Warfarin-induced changes in thrombin propagation phase parameters were then compared to those induced by unfractionated heparin, fondaparinux, rivaroxaban, and a reversible thrombin inhibitor. Anticoagulants were assessed at concentrations yielding equivalent cINR values, with each anticoagulant evaluated using 32 unique coagulation proteome compositions. The analyses showed that no anticoagulant recapitulated all features of warfarin propagation phase dynamics; differences in propagation phase effects suggest that anticoagulants that selectively target fXa or thrombin may provoke fewer bleeding episodes. More generally, the study shows that computational modeling of the response of core elements of the coagulation proteome to a physiologically relevant tissue factor stimulus may improve the monitoring of a broad range of anticoagulants
- …