246 research outputs found

    Gilbert Damping in Conducting Ferromagnets II: Model Tests of the Torque-Correlation Formula

    Full text link
    We report on a study of Gilbert damping due to particle-hole pair excitations in conducting ferromagnets. We focus on a toy two-band model and on a four-band spherical model which provides an approximate description of ferromagnetic (Ga,Mn)As. These models are sufficiently simple that disorder-ladder-sum vertex corrections to the long-wavelength spin-spin response function can be summed to all orders. An important objective of this study is to assess the reliability of practical approximate expressions which can be combined with electronic structure calculations to estimate Gilbert damping in more complex systems.Comment: 10 pages, 10 figures. Submitted to Phys. Rev.

    Soliton Solutions with Real Poles in the Alekseev formulation of the Inverse-Scattering method

    Get PDF
    A new approach to the inverse-scattering technique of Alekseev is presented which permits real-pole soliton solutions of the Ernst equations to be considered. This is achieved by adopting distinct real poles in the scattering matrix and its inverse. For the case in which the electromagnetic field vanishes, some explicit solutions are given using a Minkowski seed metric. The relation with the corresponding soliton solutions that can be constructed using the Belinskii-Zakharov inverse-scattering technique is determined.Comment: 8 pages, LaTe

    A chaotic long-lived vortex at Venus southern pole

    Full text link
    Polar vortices are common in the atmospheres of rapidly rotating planets [1-4]. On Earth and Mars they are tied to the surface and their existence follows the seasonal insolation cycle [1-3]. Venus is a slowly rotating planet but it is also known to have vortices at both poles at the edge of a superrotating atmosphere [5-8]. However, their nature and long-term properties have not been constrained so far impeding precise modeling. Here we report cloud motions at two altitude levels (about 42 km and 63 km above the surface) using infrared images from the VIRTIS instrument onboard Venus Express that show that the south polar vortex is a permanent but erratic and unpredictable feature. We find that the centers of rotation of the vortex at these levels rarely coincide and both wander erratically around the pole with speeds of up to 16 m s-1. The cloud morphology and vorticity patches are uncorrelated and change continuously developing transient areas of small vertical motions. Venus south polar vortex is a continuously evolving structure immersed in a baroclinic environment laying at altitude levels that have variable vertical and meridional wind shears, extending at least 20 km in height through a quasi-convective turbulent region

    Identification of an Extended Accretion Disk Corona in the Hercules X-1 Low State: Moderate Optical Depth, Precise Density Determination, and Verification of CNO Abundances

    Full text link
    We identify an accretion disk atmosphere and corona from the high resolution X-ray spectrum of Hercules X-1, and we determine its detailed physical properties. More than two dozen recombination emission lines (from Fe XXVI at 1.78 A to N VI at 29.08 A) and Fe K-alpha, K-beta fluorescence lines were detected in a 50 ks observation with the Chandra High-Energy Transmission Grating Spectrometer (HETGS). They allow us to measure the density, temperature, spatial distribution, elemental composition, and kinematics of the plasma. We exclude HZ Her as the source of the recombination emission. We compare accretion disk model atmospheres with the observed spectrum in order to constrain the stratification of density and ionization, disk atmosphere area, elemental composition, and energetics. The atmospheric spectrum observed during the low state is photoionized by the main-on X-ray continuum, indicating that the disk is observed edge-on during the low state. We infer the mean number of scatterings N of Ly-alpha and Ly-beta line photons from H-like ions. We derive N < 69 for O VIII Ly_alpha_1, which rules out the presence of a mechanism modeled by Sako (2003) to enhance N VII emission via a line overlap with O VIII. The line optical depth diagnostics are consistent with a flattened atmosphere. Our spectral analysis, the disk atmosphere model, and the presence of intense N VII and N VI lines (plus N V in the UV), confirm the over-abundance of nitrogen relative to other metals, which was shown to be indicative of CNO cycle processing in a massive progenitor.Comment: 38 pages, 14 figures, accepted for publication in Ap

    Solution of the 3D-Helmholtz equation in exterior domains using spherical harmonic decomposition

    Get PDF
    AbstractThis work is devoted to a finite element formulation for the Helmholtz equation in exterior domains. The proposed formulation uses a separation of variables, combining a 2D FE discretization on an intermediate spherical boundary and an ‘a priori’ analytical pattern for the radial direction. Using the analytical radial pattern and the series expansion of trial and test functions in terms of spherical harmonics, an efficient semi-analytical technique is obtained for the direct calculation of the global FE matrices. The accuracy and reliability of the formulation are illustrated through numerical examples of radiation and scattering in the exterior domain

    The Hyper Suprime-Cam extended Point Spread Functions and applications to measuring the intra-halo light

    Full text link
    We present extended point spread function (PSF) models for the Hyper Suprime-Cam Subaru Strategic Program Public Data Release 3 (HSC-SSP PDR3) in all g,r,i,Z\textit{g,r,i,Z} and Y\textit{Y}-bands. Due to its 8.2m primary mirror and long exposure periods, HSC combines deep images with wide-field coverage, making it one of the most suitable observing facilities for low surface brightness (LSB) studies. By applying a median stacking technique of point sources with different brightnesses, we show how to construct the HSC-SSP PDR3 PSF models to an extent of R \sim 5.6 arcmin. These new PSFs provide the community with a crucial tool to characterise LSB properties at large angles. We apply our HSC PSFs and demonstrate that they behave reasonably in two cases: first, to generate a 2-D model of a bright star, and second, to remove the PSF-scattered light from an Ultra Deep image of the 400020 Galaxy And Mass Assembly (GAMA) group in the SXDS field. Our main focus in this second application is characterising the r\textit{r}-band intra-halo light (IHL) component of 400020. Building on advanced source extraction techniques with careful consideration of PSF flux, we measure the IHL surface brightness (SB) group profile up to \sim 31 mag arcsec2^{-2} and R = 300 kpc. We estimate the IHL fraction (fIHL\mathrm{f_{IHL}}) profile, with a mean of fIHL\mathrm{f_{IHL}} \sim 0.13. Our results show that not removing the PSF light can overestimate the IHL SB by \sim 1.7 mag arcsec2^{-2} and the fIHL\mathrm{f_{IHL}} by \sim 30%.Comment: 21 pages, 19 figures, submitted to MNRA

    Síndrome de encefalopatía posterior reversible en lupus eritematoso sistémico

    Get PDF
    El síndrome de encefalopatía posterior reversible (PRES) es una condición reversible, poco conocida en el lupus eritematoso sistémico (LES) que puede semejar al lupus neuropsiquiátrico. Las manifestaciones de PRES son cefalea, convulsiones, alteración del nivel de conciencia y amaurosis. En la mayoría de los casos, la TC (tomografía computarizada) del cerebro muestra lesiones hipodensas en el lóbulo parieto-occipital. Aunque este síndrome es poco común, el reconocimiento rápido y preciso permite un tratamiento temprano con resultados favorables. Presentamos un caso clínico de una paciente con debut de LES posterior a episodio de eclampsia, y que durante el puerperio tardío presenta hipertensión sostenida asociada a convulsiones y deterioro del nivel de conciencia en contexto de PRES

    The Structure and X-ray Recombination Emission of a Centrally Illuminated Accretion Disk Atmosphere and Corona

    Get PDF
    We model an accretion disk atmosphere and corona photoionized by a central X-ray continuum source. We calculate the opacity and radiation transfer for an array of disk radii, to obtain the two-dimensional structure of the disk and its X-ray recombination emission. The atmospheric structure is insensitive to the viscosity alpha. We find a feedback mechanism between the disk structure and the central illumination, which expands the disk and increases the solid angle subtended by the atmosphere. We model the disk of a neutron star X-ray binary. We map the temperature, density, and ionization structure of the disk, and we simulate the high resolution spectra observable with the Chandra and XMM-Newton grating spectrometers. The X-ray emission lines from the disk atmosphere are detectable, especially for high-inclination binary systems. The grating observations of two classes of X-ray binaries already reveal important spectral similarities with our models. The line spectrum is very sensitive to the structure of each atmospheric layer, and it probes the heating mechanisms in the disk. The model spectrum is dominated by double-peaked lines of H-like and He-like ions, plus weak Fe L. Species with a broad range of ionization levels coexist at each radius: from Fe XXVI in the hot corona, to C VI at the base of the atmosphere. The choice of stable solutions affects the spectrum, since a thermal instability is present in the regime where the X-ray recombination emission is most intense.Comment: 32 pages, incl. 26 figures, accepted for publication in Ap
    corecore