480 research outputs found
Necessary Optimality Conditions for a Dead Oil Isotherm Optimal Control Problem
We study a system of nonlinear partial differential equations resulting from
the traditional modelling of oil engineering within the framework of the
mechanics of a continuous medium. Recent results on the problem provide
existence, uniqueness and regularity of the optimal solution. Here we obtain
the first necessary optimality conditions.Comment: 9 page
Mycobacterium tuberculosis genetic diversity and drug resistance conferring mutations in the Democratic Republic of the Congo
Background: The Democratic Republic of the Congo (DRC) belongs to the 22 tuberculosis (TB) high-burden countries and to the 27 high-burden multidrug-resistant (MDR)-TB countries. To date, there are no data on the genetic diversity of Mycobacterium tuberculosis in the DRC.Objective: To describe the genetic diversity and the distribution of drug resistance conferring mutations of clinical M. tuberculosis isolates from the DRC.Design: We analysed consecutive M. tuberculosis single patient isolates cultured in 2010 at the laboratory of the National TB Control Programme in Kinshasa.Setting: National TB Control Programme in Kinshasa, DRC.Results: Isolates from 50 patients with pulmonary TB were analysed, including 45 patients (90%) who failed treatment. All isolates belonged to the Euro-American lineage (main phylogenetic Lineage 4). Six different spoligotype families were observed within this lineage, including LAM (20 patients, 40%), T (15 patients; 30%), U (4 patients; 8%), S (3 patients; 6%), Haarlem (2 patients; 4%), and X (1 patient; 2%). No M. africanum strains were observed. The most frequently detected drug resistance-conferring mutations were rpoB S531L and katG S315T1. Various other mutations, including previously unreported mutations, were detected.Conclusions: The Euro-American lineage dominates in the DRC, with substantial variation in spoligotype families. This study fills an important gap on the molecular map of M. tuberculosis in sub-Saharan Africa
First insights into the phylogenetic diversity of Mycobacterium tuberculosis in Nepal
BACKGROUND: Tuberculosis (TB) is a major public health problem in Nepal. Strain variation in Mycobacterium tuberculosis may influence the outcome of TB infection and disease. To date, the phylogenetic diversity of M. tuberculosis in Nepal is unknown. METHODS AND FINDINGS: We analyzed 261 M. tuberculosis isolates recovered from pulmonary TB patients recruited between August 2009 and August 2010 in Nepal. M. tuberculosis lineages were determined by single nucleotide polymorphisms (SNP) typing and spoligotyping. Drug resistance was determined by sequencing the hot spot regions of the relevant target genes. Overall, 164 (62.8%) TB patients were new, and 97 (37.2%) were previously treated. Any drug resistance was detected in 50 (19.2%) isolates, and 16 (6.1%) were multidrug-resistant. The most frequent M. tuberculosis lineage was Lineage 3 (CAS/Delhi) with 106 isolates (40.6%), followed by Lineage 2 (East-Asian lineage, includes Beijing genotype) with 84 isolates (32.2%), Lineage 4 (Euro-American lineage) with 41 (15.7%) isolates, and Lineage 1 (Indo-Oceanic lineage) with 30 isolates (11.5%). Based on spoligotyping, we found 45 different spoligotyping patterns that were previously described. The Beijing (83 isolates, 31.8%) and CAS spoligotype (52, 19.9%) were the dominant spoligotypes. A total of 36 (13.8%) isolates could not be assigned to any known spoligotyping pattern. Lineage 2 was associated with female sex (adjusted odds ratio [aOR] 2.58, 95% confidence interval [95% CI] 1.42-4.67, p = 0.002), and any drug resistance (aOR 2.79; 95% CI 1.43-5.45; p = 0.002). We found no evidence for an association of Lineage 2 with age or BCG vaccination status. CONCLUSIONS: We found a large genetic diversity of M. tuberculosis in Nepal with representation of all four major lineages. Lineages 3 and 2 were dominating. Lineage 2 was associated with clinical characteristics. This study fills an important gap on the map of the M. tuberculosis genetic diversity in the Asian reg
A robust SNP barcode for typing Mycobacterium tuberculosis complex strains
Strain-specific genomic diversity in the Mycobacterium tuberculosis complex (MTBC) is an important factor in pathogenesis that may affect virulence, transmissibility, host response and emergence of drug resistance. Several systems have been proposed to classify MTBC strains into distinct lineages and families. Here, we investigate single-nucleotide polymorphisms (SNPs) as robust (stable) markers of genetic variation for phylogenetic analysis. We identify ~92k SNP across a global collection of 1,601 genomes. The SNP-based phylogeny is consistent with the gold-standard regions of difference (RD) classification system. Of the ~7k strain-specific SNPs identified, 62 markers are proposed to discriminate known circulating strains. This SNP-based barcode is the first to cover all main lineages, and classifies a greater number of sublineages than current alternatives. It may be used to classify clinical isolates to evaluate tools to control the disease, including therapeutics and vaccines whose effectiveness may vary by strain type
The Past and Future of Tuberculosis Research
Renewed efforts in tuberculosis (TB) research have led to important new insights into the biology and epidemiology of this devastating disease. Yet, in the face of the modern epidemics of HIV/AIDS, diabetes, and multidrug resistance—all of which contribute to susceptibility to TB—global control of the disease will remain a formidable challenge for years to come. New high-throughput genomics technologies are already contributing to studies of TB's epidemiology, comparative genomics, evolution, and host–pathogen interaction. We argue here, however, that new multidisciplinary approaches—especially the integration of epidemiology with systems biology in what we call “systems epidemiology”—will be required to eliminate TB
Potential contribution of HIV during first-line tuberculosis treatment to subsequent rifampicin-monoresistant tuberculosis and acquired tuberculosis drug resistance in South Africa: a retrospective molecular epidemiology study
Background: South Africa has a high burden of rifampicin-resistant tuberculosis (including multidrug-resistant [MDR] tuberculosis), with increasing rifampicin-monoresistant (RMR) tuberculosis over time. Resistance acquisition during first-line tuberculosis treatment could be a key contributor to this burden, and HIV might increase the risk of acquiring rifampicin resistance. We assessed whether HIV during previous treatment was associated with RMR tuberculosis and resistance acquisition among a retrospective cohort of patients with MDR or rifampicin-resistant tuberculosis. Methods: In this retrospective cohort study, we included all patients routinely diagnosed with MDR or rifampicin-resistant tuberculosis in Khayelitsha, Cape Town, South Africa, between Jan 1, 2008, and Dec 31, 2017. Patient-level data were obtained from a prospective database, complemented by data on previous tuberculosis treatment and HIV from a provincial health data exchange. Stored MDR or rifampicin-resistant tuberculosis isolates from patients underwent whole-genome sequencing (WGS). WGS data were used to infer resistance acquisition versus transmission, by identifying genomically unique isolates (single nucleotide polymorphism threshold of five). Logistic regression analyses were used to assess factors associated with RMR tuberculosis and genomic uniqueness. Findings: The cohort included 2041 patients diagnosed with MDR or rifampicin-resistant tuberculosis between Jan 1, 2008, and Dec 31, 2017; of those, 463 (22.7%) with RMR tuberculosis and 1354 (66.3%) with previous tuberculosis treatment. In previously treated patients, HIV positivity during previous tuberculosis treatment versus HIV negativity (adjusted odds ratio [OR] 2.07, 95% CI 1.35-3.18), and three or more previous tuberculosis treatment episodes versus one (1.96, 1.21-3.17) were associated with RMR tuberculosis. WGS data showing MDR or rifampicin-resistant tuberculosis were available for 1169 patients; 360 (30.8%) isolates were identified as unique. In previously treated patients, RMR tuberculosis versus MDR tuberculosis (adjusted OR 4.96, 3.40-7.23), HIV positivity during previous tuberculosis treatment (1.71, 1.03-2.84), and diagnosis in 2013-17 (1.42, 1.02-1.99) versus 2008-12, were associated with uniqueness. In previously treated patients with RMR tuberculosis, HIV positivity during previous treatment (adjusted OR 5.13, 1.61-16.32) was associated with uniqueness as was female sex (2.50 [1.18-5.26]). Interpretation: These data suggest that HIV contributes to rifampicin-resistance acquisition during first-line tuberculosis treatment and that this might be driving increasing RMR tuberculosis over time. Large-scale prospective cohort studies are required to further quantify this risk. Funding: Swiss National Science Foundation, South African National Research Foundation, and Wellcome Trust
Genotypic Diversity and Drug Susceptibility Patterns among M. tuberculosis Complex Isolates from South-Western Ghana
OBJECTIVE: The aim of this study was to use spoligotyping and large sequence polymorphism (LSP) to study the population structure of M. tuberculosis complex (MTBC) isolates. METHODS: MTBC isolates were identified using standard biochemical procedures, IS6110 PCR, and large sequence polymorphisms. Isolates were further typed using spoligotyping, and the phenotypic drug susceptibility patterns were determined by the proportion method. RESULT: One hundred and sixty-two isolates were characterised by LSP typing. Of these, 130 (80.25%) were identified as Mycobacterium tuberculosis sensu stricto (MTBss), with the Cameroon sub-lineage being dominant (N = 59/130, 45.38%). Thirty-two (19.75%) isolates were classified as Mycobacterium africanum type 1, and of these 26 (81.25%) were identified as West-Africa I, and 6 (18.75%) as West-Africa II. Spoligotyping sub-lineages identified among the MTBss included Haarlem (N = 15, 11.53%), Ghana (N = 22, 16.92%), Beijing (4, 3.08%), EAI (4, 3.08%), Uganda I (4, 3.08%), LAM (2, 1.54%), X (N = 1, 0.77%) and S (2, 1.54%). Nine isolates had SIT numbers with no identified sub-lineages while 17 had no SIT numbers. MTBss isolates were more likely to be resistant to streptomycin (p>0.008) and to any drug resistance (p>0.03) when compared to M. africanum. CONCLUSION: This study demonstrated that overall 36.4% of TB in South-Western Ghana is caused by the Cameroon sub-lineage of MTBC and 20% by M. africanum type 1, including both the West-Africa 1 and West-Africa 2 lineages. The diversity of MTBC in Ghana should be considered when evaluating new TB vaccine
Mapping of Mycobacterium tuberculosis Complex Genetic Diversity Profiles in Tanzania and Other African Countries
The aim of this study was to assess and characterize Mycobacterium tuberculosis complex (MTBC) genotypic diversity in Tanzania, as well as in neighbouring East and other several African countries. We used spoligotyping to identify a total of 293 M. tuberculosis clinical isolates (one isolate per patient) collected in the Bunda, Dar es Salaam, Ngorongoro and Serengeti areas in Tanzania. The results were compared with results in the SITVIT2 international database of the Pasteur Institute of Guadeloupe. Genotyping and phylogeographical analyses highlighted the predominance of the CAS, T, EAI, and LAM MTBC lineages in Tanzania. The three most frequent Spoligotype International Types (SITs) were: SIT21/CAS1-Kili (n = 76; 25.94%), SIT59/LAM11-ZWE (n = 22; 7.51%), and SIT126/EAI5 tentatively reclassified as EAI3-TZA (n = 18; 6.14%). Furthermore, three SITs were newly created in this study (SIT4056/EAI5 n = 2, SIT4057/T1 n = 1, and SIT4058/EAI5 n = 1). We noted that the East-African-Indian (EAI) lineage was more predominant in Bunda, the Manu lineage was more common among strains isolated in Ngorongoro, and the Central-Asian (CAS) lineage was more predominant in Dar es Salaam (p-value<0.0001). No statistically significant differences were noted when comparing HIV status of patients vs. major lineages (p-value = 0.103). However, when grouping lineages as Principal Genetic Groups (PGG), we noticed that PGG2/3 group (Haarlem, LAM, S, T, and X) was more associated with HIV-positive patients as compared to PGG1 group (Beijing, CAS, EAI, and Manu) (p-value = 0.03). This study provided mapping of MTBC genetic diversity in Tanzania (containing information on isolates from different cities) and neighbouring East African and other several African countries highlighting differences as regards to MTBC genotypic distribution between Tanzania and other African countries. This work also allowed underlining of spoligotyping patterns tentatively grouped within the newly designated EAI3-TZA lineage (remarkable by absence of spacers 2 and 3, and represented by SIT126) which seems to be specific to Tanzania. However, further genotyping information would be needed to confirm this specificity
- …