878 research outputs found
Minimal realizations of linear systems: The "shortest basis" approach
Given a controllable discrete-time linear system C, a shortest basis for C is
a set of linearly independent generators for C with the least possible lengths.
A basis B is a shortest basis if and only if it has the predictable span
property (i.e., has the predictable delay and degree properties, and is
non-catastrophic), or alternatively if and only if it has the subsystem basis
property (for any interval J, the generators in B whose span is in J is a basis
for the subsystem C_J). The dimensions of the minimal state spaces and minimal
transition spaces of C are simply the numbers of generators in a shortest basis
B that are active at any given state or symbol time, respectively. A minimal
linear realization for C in controller canonical form follows directly from a
shortest basis for C, and a minimal linear realization for C in observer
canonical form follows directly from a shortest basis for the orthogonal system
C^\perp. This approach seems conceptually simpler than that of classical
minimal realization theory.Comment: 20 pages. Final version, to appear in special issue of IEEE
Transactions on Information Theory on "Facets of coding theory: From
algorithms to networks," dedicated to Ralf Koette
MacWilliams Identities for Terminated Convolutional Codes
Shearer and McEliece [1977] showed that there is no MacWilliams identity for
the free distance spectra of orthogonal linear convolutional codes. We show
that on the other hand there does exist a MacWilliams identity between the
generating functions of the weight distributions per unit time of a linear
convolutional code C and its orthogonal code C^\perp, and that this
distribution is as useful as the free distance spectrum for estimating code
performance. These observations are similar to those made recently by
Bocharova, Hug, Johannesson and Kudryashov; however, we focus on terminating by
tail-biting rather than by truncation.Comment: 5 pages; accepted for 2010 IEEE International Symposium on
Information Theory, Austin, TX, June 13-1
Simple Rate-1/3 Convolutional and Tail-Biting Quantum Error-Correcting Codes
Simple rate-1/3 single-error-correcting unrestricted and CSS-type quantum
convolutional codes are constructed from classical self-orthogonal
\F_4-linear and \F_2-linear convolutional codes, respectively. These
quantum convolutional codes have higher rate than comparable quantum block
codes or previous quantum convolutional codes, and are simple to decode. A
block single-error-correcting [9, 3, 3] tail-biting code is derived from the
unrestricted convolutional code, and similarly a [15, 5, 3] CSS-type block code
from the CSS-type convolutional code.Comment: 5 pages; to appear in Proceedings of 2005 IEEE International
Symposium on Information Theor
The Dynamics of Group Codes: Dual Abelian Group Codes and Systems
Fundamental results concerning the dynamics of abelian group codes
(behaviors) and their duals are developed. Duals of sequence spaces over
locally compact abelian groups may be defined via Pontryagin duality; dual
group codes are orthogonal subgroups of dual sequence spaces. The dual of a
complete code or system is finite, and the dual of a Laurent code or system is
(anti-)Laurent. If C and C^\perp are dual codes, then the state spaces of C act
as the character groups of the state spaces of C^\perp. The controllability
properties of C are the observability properties of C^\perp. In particular, C
is (strongly) controllable if and only if C^\perp is (strongly) observable, and
the controller memory of C is the observer memory of C^\perp. The controller
granules of C act as the character groups of the observer granules of C^\perp.
Examples of minimal observer-form encoder and syndrome-former constructions are
given. Finally, every observer granule of C is an "end-around" controller
granule of C.Comment: 30 pages, 11 figures. To appear in IEEE Trans. Inform. Theory, 200
- …