227 research outputs found
General Relativistic Thermoelectric Effects in Superconductors
We discuss the general-relativistic contributions to occur in the
electromagnetic properties of a superconductor with a heat flow. The appearance
of general-relativistic contribution to the magnetic flux through a
superconducting thermoelectric bimetallic circuit is shown. A response of the
Josephson junctions to a heat flow is investigated in the general-relativistic
framework. Some gravitothermoelectric effects which are observable in the
superconducting state in the Earth's gravitational field are considered.Comment: 13 pages, 2 figure
The current-phase relation in Josephson tunnel junctions
The relation in SFIFS, SNINS and SIS tunnel junctions is studied.
The method for analytical solution of linearized Usadel equations has been
developed and applied to these structures. It is shown that the Josephson
current across the structure has the sum of and
components. Two different physical mechanisms are responsible for the sign of
. The first one is the depairing by current which contributes
positively to the term, while the second one is the finite
transparency of SF or SN interfaces which provides the negative contribution.
In SFIFS junctions, where the first harmonic vanishes at 0 - transition,
the calculated second harmonic fully determines the curve.Comment: 6 pages, 2 figure
Re-entrant superconductivity in Nb/Cu(1-x)Ni(x) bilayers
We report on the first observation of a pronounced re-entrant
superconductivity phenomenon in superconductor/ferromagnetic layered systems.
The results were obtained using a superconductor/ferromagnetic-alloy bilayer of
Nb/Cu(1-x)Ni(x). The superconducting transition temperature T_{c} drops sharply
with increasing thickness d_{CuNi} of the ferromagnetic layer, until complete
suppression of superconductivity is observed at d_{CuNi}= 4 nm. Increasing the
Cu(1-x)Ni(x) layer thickness further, superconductivity reappears at
d_{CuNi}=13 nm. Our experiments give evidence for the pairing function
oscillations associated with a realization of the quasi-one dimensional
Fulde-Ferrell-Larkin-Ovchinnikov (FFLO) like state in the ferromagnetic layer.Comment: 3 pages, 3 figures, REVTEX4/twocolum
Ground state and bias current induced rearrangement of semifluxons in 0-pi long Josephson junctions
We investigate numerically a long Josephson junction with several phase
pi-discontinuity points. Such junctions are usually fabricated as a ramp
between an anisotropic cuprate superconductor like YBCO and an isotropic metal
superconductor like Nb. From the top, they look like zigzags with pi-jumps of
the Josephson phase at the corners. These pi-jumps, at certain conditions, lead
to the formation of half-integer flux quanta, which we call semifluxons (SF),
pinned at the corners. We show (a) that the spontaneous formation of SFs
depends on the junction length, (b) that the ground state without SFs can be
converted to a state with SFs by applying a bias current, (c) that the SF
configuration can be rearranged by the bias current. All these effects can be
observed using a SQUID microscope.Comment: ~8 pages, 6 figures, submitted to PR
Superconducting decay length in a ferromagnetic metal
The complex decay length xi characterizing penetration of superconducting
correlations into a ferromagnet due to the proximity effect is studied
theoretically in the frame of the linearized Eilenberger equations. The real
part xi_1 and imaginary part xi_2 of the decay length are calculated as
functions of exchange energy and the rates of ordinary, spin flip and spin
orbit electronic scattering in a ferromagnet. The lengths xi_1,2 determine the
spatial scales of, respectively, decay and oscillation of a critical current in
SFS Josephson junctions in the limit of large distance between superconducting
electrodes. The developed theory provides the criteria of applicability of the
expressions for xi_1 and xi_2 in the dirty and the clean limits which are
commonly used in the analysis of SF hybrid structures.Comment: 5 pages, 3 figure
On Field Induced Diaelastic Effect in a Small Josephson Contact
An analog of the diaelastic effect is predicted to occur in a small Josephson
contact with Josephson vortices manifesting itself as magnetic field induced
softening of the contact shear modulus C(T,H). In addition to Fraunhofer type
field oscillations, C(T,H) is found to exhibit pronounced flux driven
temperature oscillations near T_C
Spontaneous Spin Polarized Currents in Superconductor-Ferromagnetic Metal Heterostructures
We study a simple microscopic model for thin, ferromagnetic, metallic layers
on semi-infinite bulk superconductor. We find that for certain values of the
exchange spliting, on the ferromagnetic side, the ground states of such
structures feature spontaneously induced spin polarized currents. Using a
mean-field theory, which is selfconsistent with respect to the pairing
amplitude , spin polarization and the spontaneous current
, we show that not only there are Andreev bound states in the
ferromagnet but when their energies are near zero they support
spontaneous currents parallel to the ferromagnetic-superconducting interface.
Moreover, we demonstrate that the spin-polarization of these currents depends
sensitively on the band filling.Comment: 4 pages, 5 Postscript figures (included
RF assisted switching in magnetic Josephson junctions
We test the effect of an external RF field on the switching processes of magnetic Josephson junctions (MJJs) suitable for the realization of fast, scalable cryogenic memories compatible with Single Flux Quantum logic. We show that the combined application of microwaves and magnetic field pulses can improve the performances of the device, increasing the separation between the critical current levels corresponding to logical "0" and "1." The enhancement of the current level separation can be as high as 80% using an optimal set of parameters. We demonstrate that external RF fields can be used as an additional tool to manipulate the memory states, and we expect that this approach may lead to the development of new methods of selecting MJJs and manipulating their states in memory arrays for various applications
Josephson effect in double-barrier superconductor-ferromagnet junctions
We study the Josephson effect in ballistic double-barrier SIFIS planar
junctions, consisting of bulk superconductors (S), a clean metallic ferromagnet
(F), and insulating interfaces (I). We solve the scattering problem based on
the Bogoliubov--de Gennes equations and derive a general expression for the dc
Josephson current, valid for arbitrary interfacial transparency and Fermi wave
vectors mismatch (FWVM). We consider the coherent regime in which quasiparticle
transmission resonances contribute significantly to the Andreev process. The
Josephson current is calculated for various parameters of the junction, and the
influence of both interfacial transparency and FWVM is analyzed. For thin
layers of strong ferromagnet and finite interfacial transparency, we find that
coherent (geometrical) oscillations of the maximum Josephson current are
superimposed on the oscillations related to the crossover between 0 and
states. For the same case we find that the temperature-induced
transition occurs if the junction is very close to the crossovers at zero
temperature.Comment: 13 pages, 6 figure
- …