1,870 research outputs found
Evolving rules for document classification
We describe a novel method for using Genetic Programming to create compact classification rules based on combinations of N-Grams (character strings). Genetic programs acquire fitness by producing rules that are effective classifiers in terms of precision and recall when evaluated against a set of training documents. We describe a set of functions and terminals and provide results from a classification task using the Reuters 21578 dataset. We also suggest that because the induced rules are meaningful to a human analyst they may have a number of other uses beyond classification and provide a basis for text mining applications
Using of small-scale quantum computers in cryptography with many-qubit entangled states
We propose a new cryptographic protocol. It is suggested to encode
information in ordinary binary form into many-qubit entangled states with the
help of a quantum computer. A state of qubits (realized, e.g., with photons) is
transmitted through a quantum channel to the addressee, who applies a quantum
computer tuned to realize the inverse unitary transformation decoding of the
message. Different ways of eavesdropping are considered, and an estimate of the
time needed for determining the secret unitary transformation is given. It is
shown that using even small quantum computers can serve as a basis for very
efficient cryptographic protocols. For a suggested cryptographic protocol, the
time scale on which communication can be considered secure is exponential in
the number of qubits in the entangled states and in the number of gates used to
construct the quantum network
Entanglement of electrons in interacting molecules
Quantum entanglement is a concept commonly used with reference to the
existence of certain correlations in quantum systems that have no classical
interpretation. It is a useful resource to enhance the mutual information of
memory channels or to accelerate some quantum processes as, for example, the
factorization in Shor's Algorithm. Moreover, entanglement is a physical
observable directly measured by the von Neumann entropy of the system. We have
used this concept in order to give a physical meaning to the electron
correlation energy in systems of interacting electrons. The electronic
correlation is not directly observable, since it is defined as the difference
between the exact ground state energy of the many--electrons Schroedinger
equation and the Hartree--Fock energy. We have calculated the correlation
energy and compared with the entanglement, as functions of the nucleus--nucleus
separation using, for the hydrogen molecule, the Configuration Interaction
method. Then, in the same spirit, we have analyzed a dimer of ethylene, which
represents the simplest organic conjugate system, changing the relative
orientation and distance of the molecules, in order to obtain the configuration
corresponding to maximum entanglement.Comment: 15 pages, 7 figures, standard late
Observing Long Cosmic Strings Through Gravitational Lensing
We consider the gravitational lensing produced by long cosmic strings formed
in a GUT scale phase transition. We derive a formula for the deflection of
photons which pass near the strings that reduces to an integral over the light
cone projection of the string configuration plus constant terms which are not
important for lensing. Our strings are produced by performing numerical
simulations of cosmic string networks in flat, Minkowski space ignoring the
effects of cosmological expansion. These strings have more small scale
structure than those from an expanding universe simulation - fractal dimension
1.3 for Minkowski versus 1.1 for expanding - but share the same qualitative
features. Lensing simulations show that for both point-like and extended
objects, strings produce patterns unlike more traditional lenses, and, in
particluar, the kinks in strings tend to generate demagnified images which
reside close to the string. Thus lensing acts as a probe of the small scale
structure of a string. Estimates of lensing probablity suggest that for string
energy densities consistant with string seeded structure formation, on the
order of tens of string lenses should be observed in the Sloan Digital Sky
Survey quasar catalog. We propose a search strategy in which string lenses
would be identified in the SDSS quasar survey, and the string nature of the
lens can be confirmed by the observation of nearby high redshift galaxies which
are also be lensed by the string.Comment: 24 pages revtex with 12 postscript firgure
Neutrinos in a spherical box
In the present paper we study some neutrino properties as they may appear in
the low energy neutrinos emitted in triton decay with maximum neutrino energy
of 18.6 keV. The technical challenges to this end can be achieved by building a
very large TPC capable of detecting low energy recoils, down to a a few tenths
of a keV, within the required low background constraints. More specifically We
propose the development of a spherical gaseous TPC of about 10-m in radius and
a 200 Mcurie triton source in the center of curvature. One can list a number of
exciting studies, concerning fundamental physics issues, that could be made
using a large volume TPC and low energy antineutrinos: 1) The oscillation
length involving the small angle of the neutrino mixing matrix, directly
measured in this disappearance experiment, is fully contained inside the
detector. Measuring the counting rate of neutrino-electron elastic scattering
as a function of the distance of the source will give a precise and unambiguous
measurement of the oscillation parameters free of systematic errors. In fact
first estimates show that even with a year's data taking a sensitivity of a few
percent for the measurement of the above angle will be achieved. 2) The low
energy detection threshold offers a unique sensitivity for the neutrino
magnetic moment which is about two orders of magnitude beyond the current
experimental limit. 3) Scattering at such low neutrino energies has never been
studied and any departure from the expected behavior may be an indication of
new physics beyond the standard model. In this work we mainly focus on the
various theoretical issues involved including a precise determination of the
Weinberg angle at very low momentum transfer.Comment: 16 Pages, LaTex, 7 figures, talk given at NANP 2003, Dubna, Russia,
June 23, 200
Test of Bell's Inequality using the Spin Filter Effect in Ferromagnetic Semiconductor Micro-structures
A theoretical proposal for testing Bell's inequality in mesoscopic systems is
presented. We show that the entanglement of two electron spins can be detected
in the spin filter effect in the mesoscopic semiconductor / ferromagnetic
semiconductor / semiconductor junction. The current-current correlation
function is calculated by use of the quantum scattering theory and we compare
it with the local hidden variable theory. We also discuss the influence of an
imperfect spin filter and derive the condition to see the violation of Bell's
inequality experimentally.Comment: 6 pages, 4 figures, submitted to J. Phys. Soc. Jp
Entanglement and the SU(2) phase states in atomic systems
We show that a system of 2n identical two-level atoms interacting with n
cavity photons manifests entanglement and that the set of entangled states
coincides with the so-called SU(2) phase states. In particular, violation of
classical realism in terms of the GHZ and GHSH conditions is proved. We discuss
a new property of entanglement expressed in terms of local measurements. We
also show that generation of entangled states in the atom-photon systems under
consideration strongly depends on the choice of initial conditions and that the
parasitic influence of cavity detuning can be compensated through the use of
Kerr medium.Comment: 10 pages, 1 figur
Self-Reported Occupational Exposure to HIV and Factors Influencing its Management Practice: A Study of Healthcare Workers in Tumbi and Dodoma Hospitals, Tanzania.
Blood borne infectious agents such as hepatitis B virus (HBV), hepatitis C virus (HCV) and human immune deficiency virus (HIV) constitute a major occupational hazard for healthcare workers (HCWs). To some degree it is inevitable that HCWs sustain injuries from sharp objects such as needles, scalpels and splintered bone during execution of their duties. However, in Tanzania, there is little or no information on factors that influence the practice of managing occupational exposure to HIV by HCWs. This study was conducted to determine the prevalence of self-reported occupational exposure to HIV among HCWs and explore factors that influence the practice of managing occupational exposure to HIV by HCWs in Tanzania. Self-administered questionnaire was designed to gather information of healthcare workers' occupational exposures in the past 12 months and circumstances in which these injuries occurred. Practice of managing occupational exposure was assessed by the following questions: Nearly half of the HCWs had experienced at least one occupational injury in the past 12 months. Though most of the occupational exposures to HIV were experienced by female nurses, non-medical hospital staff received PEP more frequently than nurses and doctors. Doctors and nurses frequently encountered occupational injuries in surgery room and labor room respectively. HCWs with knowledge on the possibility of HIV transmission and those who knew whom to contact in event of occupational exposure to HIV were less likely to have poor practice of managing occupational exposure. Needle stick injuries and splashes are common among HCWs at Tumbi and Dodoma hospitals. Knowledge of the risk of HIV transmission due to occupational exposure and knowing whom to contact in event of exposure predicted practice of managing the exposure. Thus provision of health education on occupational exposure may strengthen healthcare workers' practices to manage occupational exposure
Observation of Fluctuation-Dissipation-Theorem Violations in a Structural Glass
The fluctuation-dissipation theorem (FDT), connecting dielectric
susceptibility and polarization noise was studied in glycerol below its glass
transition temperature Tg. Weak FDT violations were observed after a quench
from just above to just below Tg, for frequencies above the alpha peak.
Violations persisted up to 10^5 times the thermal equilibration time of the
configurational degrees of freedom under study, but comparable to the average
relaxation time of the material. These results suggest that excess energy flows
from slower to faster relaxing modes.Comment: Improved discussion; final version to appear in Phys. Rev. Lett. 4
pages, 5 PS figures, RevTe
First AGILE Catalog of High Confidence Gamma-Ray Sources
We present the first catalog of high-confidence gamma-ray sources detected by
the AGILE satellite during observations performed from July 9, 2007 to June 30,
2008. Catalogued sources are detected by merging all the available data over
the entire time period. AGILE, launched in April 2007, is an ASI mission
devoted to gamma-ray observations in the 30 MeV - 50 GeV energy range, with
simultaneous X-ray imaging capability in the 18-60 keV band. This catalog is
based on Gamma-Ray Imaging Detector (GRID) data for energies greater than 100
MeV. For the first AGILE catalog we adopted a conservative analysis, with a
high-quality event filter optimized to select gamma-ray events within the
central zone of the instrument Field of View (radius of 40 degrees). This is a
significance-limited (4 sigma) catalog, and it is not a complete flux-limited
sample due to the non-uniform first year AGILE sky coverage. The catalog
includes 47 sources, 21 of which are associated with confirmed or candidate
pulsars, 13 with Blazars (7 FSRQ, 4 BL Lacs, 2 unknown type), 2 with HMXRBs, 2
with SNRs, 1 with a colliding-wind binary system, 8 with unidentified sources.Comment: Revised version, 15 pages, 3 figures, 3 tables. To be published in
Astronomy and Astrophysics. Text improved and clarified. Refined analysis of
complex regions of the Galactic plane yields a new list of high-confidence
sources including 47 sources (compared with the 40 sources appearing in the
first version
- …