517 research outputs found

    EffectiveSan: Type and Memory Error Detection using Dynamically Typed C/C++

    Full text link
    Low-level programming languages with weak/static type systems, such as C and C++, are vulnerable to errors relating to the misuse of memory at runtime, such as (sub-)object bounds overflows, (re)use-after-free, and type confusion. Such errors account for many security and other undefined behavior bugs for programs written in these languages. In this paper, we introduce the notion of dynamically typed C/C++, which aims to detect such errors by dynamically checking the "effective type" of each object before use at runtime. We also present an implementation of dynamically typed C/C++ in the form of the Effective Type Sanitizer (EffectiveSan). EffectiveSan enforces type and memory safety using a combination of low-fat pointers, type meta data and type/bounds check instrumentation. We evaluate EffectiveSan against the SPEC2006 benchmark suite and the Firefox web browser, and detect several new type and memory errors. We also show that EffectiveSan achieves high compatibility and reasonable overheads for the given error coverage. Finally, we highlight that EffectiveSan is one of only a few tools that can detect sub-object bounds errors, and uses a novel approach (dynamic type checking) to do so.Comment: To appear in the Proceedings of 39th ACM SIGPLAN Conference on Programming Language Design and Implementation (PLDI2018

    Site determination and thermally assisted tunneling in homogenous nucleation

    Get PDF
    A combined low-temperature scanning tunneling microscopy and density functional theory study on the binding and diffusion of copper monomers, dimers, and trimers adsorbed on Cu(111) is presented. Whereas atoms in trimers are found in fcc sites only, monomers as well as atoms in dimers can occupy the stable fcc as well as the metastable hcp site. In fact the dimer fcc-hcp configuration was found to be only 1.3 meV less favorable with respect to the fcc-fcc configuration. This enables a confined intra-cell dimer motion, which at temperatures below 5 K is dominated by thermally assisted tunneling.Comment: 4 pages, 4 figure

    Surface Screening Charge and Effective Charge

    Full text link
    The charge on an atom at a metallic surface in an electric field is defined as the field-derivative of the force on the atom, and this is consistent with definitions of effective charge and screening charge. This charge can be found from the shift in the potential outside the surface when the atoms are moved. This is used to study forces and screening on surface atoms of Ag(001) c(2×2)(2\times 2) -- Xe as a function of external field. It is found that at low positive (outward) fields, the Xe with a negative effective charge of -0.093 ∣e∣|{e}| is pushed into the surface. At a field of 2.3 V \AA−1^{-1} the charge changes sign, and for fields greater than 4.1 V \AA−1^{-1} the Xe experiences an outward force. Field desorption and the Eigler switch are discussed in terms of these results.Comment: 4 pages, 1 figure, RevTex (accepted by PRL

    Classical trajectories in quantum transport at the band center of bipartite lattices with or without vacancies

    Full text link
    Here we report on several anomalies in quantum transport at the band center of a bipartite lattice with vacancies that are surely due to its chiral symmetry, namely: no weak localization effect shows up, and, when leads have a single channel the transmission is either one or zero. We propose that these are a consequence of both the chiral symmetry and the large number of states at the band center. The probability amplitude associated to the eigenstate that gives unit transmission ressembles a classical trajectory both with or without vacancies. The large number of states allows to build up trajectories that elude the blocking vacancies explaining the absence of weak localization.Comment: 5 pages, 5 figure

    Quantum Breaking of Elastic String

    Full text link
    Breaking of an atomic chain under stress is a collective many-particle tunneling phenomenon. We study classical dynamics in imaginary time by using conformal mapping technique, and derive an analytic formula for the probability of breaking. The result covers a broad temperature interval and interpolates between two regimes: tunneling and thermal activation. Also, we consider the breaking induced by an ultrasonic wave propagating in the chain, and propose to observe it in an STM experiment.Comment: 8 pages, RevTeX 3.0, Landau Institute preprint 261/643

    First principles theory of inelastic currents in a scanning tunneling microscope

    Get PDF
    A first principles theory of inelastic tunneling between a model probe tip and an atom adsorbed on a surface is presented, extending the elastic tunneling theory of Tersoff and Hamann. The inelastic current is proportional to the change in the local density of states at the center of the tip due to the addition of the adsorbate. We use the theory to investigate the vibrational heating of an adsorbate below an STM tip. We calculate the desorption rate of H from Si(100)-H(2×\times1) as function of the sample bias and tunnel current, and find excellent agreement with recent experimental data.Comment: 5 pages, RevTeX, epsf file

    Spontaneous magnetization of aluminum nanowires deposited on the NaCl(100) surface

    Get PDF
    We investigate electronic structures of Al quantum wires, both unsupported and supported on the (100) NaCl surface, using the density-functional theory. We confirm that unsupported nanowires, constrained to be linear, show magnetization when elongated beyond the equilibrium length. Allowing ions to relax, the wires deform to zig-zag structures with lower magnetization but no dimerization occurs. When an Al wire is deposited on the NaCl surface, a zig-zag geometry emerges again. The magnetization changes moderately from that for the corresponding unsupported wire. We analyse the findings using electron band structures and simple model wires.Comment: submitted to PHys. Rev.

    Scattering Theory of Kondo Mirages and Observation of Single Kondo Atom Phase Shift

    Full text link
    We explain the origin of the Kondo mirage seen in recent quantum corral Scanning Tunneling Microscope (STM) experiments with a scattering theory of electrons on the surfaces of metals. Our theory combined with experimental data provides the first direct observation of a single Kondo atom phase shift. The Kondo mirage at the empty focus of an elliptical quantum corral is shown to arise from multiple electron bounces off the walls of the corral in a manner analagous to the formation of a real image in optics. We demonstrate our theory with direct quantitive comparision to experimental data.Comment: 13 pages; significant clarifications of metho

    Interaction between Kondo impurities in a quantum corral

    Full text link
    We calculate the spectral densities for two impurities inside an elliptical quantum corral using exact diagonalization in the relevant Hilbert subspace and embedding into the rest of the system. For one impurity, the space and energy dependence of the change in differential conductance Δ=dI/dV\Delta = dI/dV observed in the quantum mirage experiment is reproduced. In presence of another impurity, Δ=dI/dV\Delta = dI/dV is very sensitive to the hybridization between impurity and bulk. The impurities are correlated ferromagnetically between them. A hopping ≳0.15\gtrsim 0.15 eV between impurities destroy the Kondo resonance.Comment: 4 pages, 4 figure

    Quantum Coherence Oscillations in Antiferromagnetic Chains

    Full text link
    Macroscopic quantum coherence oscillations in mesoscopic antiferromagnets may appear when the anisotropy potential creates a barrier between the antiferromagnetic states with opposite orientations of the Neel vector. This phenomenon is studied for the physical situation of the nuclear spin system of eight Xe atoms arranged on a magnetic surface along a chain. The oscillation period is calculated as a function of the chain constant. The environmental decoherence effects at finite temperature are accounted assuming a dipole coupling between the spin chain and the fluctuating magnetic field of the surface. The numerical calculations indicate that the oscillations are damped by a rate ∼(N−1)/τ\sim (N-1)/ \tau, where NN is the number of spins and τ\tau is the relaxation time of a single spin.Comment: 10 pages, Latex, two postscript figures; submitted to Phys. Rev.
    • …
    corecore